Kurup Naina, Yan Dong, Kono Karina, Jin Yishi
Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America.
Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California, United States of America.
PLoS Genet. 2017 Jun 21;13(6):e1006844. doi: 10.1371/journal.pgen.1006844. eCollection 2017 Jun.
Neural circuits are dynamic, with activity-dependent changes in synapse density and connectivity peaking during different phases of animal development. In C. elegans, young larvae form mature motor circuits through a dramatic switch in GABAergic neuron connectivity, by concomitant elimination of existing synapses and formation of new synapses that are maintained throughout adulthood. We have previously shown that an increase in microtubule dynamics during motor circuit rewiring facilitates new synapse formation. Here, we further investigate cellular control of circuit rewiring through the analysis of mutants obtained in a forward genetic screen. Using live imaging, we characterize novel mutations that alter cargo binding in the dynein motor complex and enhance anterograde synaptic vesicle movement during remodeling, providing in vivo evidence for the tug-of-war between kinesin and dynein in fast axonal transport. We also find that a casein kinase homolog, TTBK-3, inhibits stabilization of nascent synapses in their new locations, a previously unexplored facet of structural plasticity of synapses. Our study delineates temporally distinct signaling pathways that are required for effective neural circuit refinement.
神经回路是动态的,在动物发育的不同阶段,依赖活动的突触密度和连接性变化达到峰值。在秀丽隐杆线虫中,幼虫通过GABA能神经元连接性的剧烈转变形成成熟的运动回路,同时消除现有的突触并形成在成年期一直维持的新突触。我们之前已经表明,运动回路重新布线期间微管动力学的增加促进了新突触的形成。在这里,我们通过对正向遗传筛选中获得的突变体进行分析,进一步研究回路重新布线的细胞控制。使用实时成像,我们鉴定出了新的突变,这些突变改变了动力蛋白运动复合体中的货物结合,并在重塑过程中增强了顺行性突触小泡的移动,为驱动蛋白和动力蛋白在快速轴突运输中的拔河作用提供了体内证据。我们还发现,一种酪蛋白激酶同源物TTBK-3会抑制新生突触在其新位置的稳定,这是突触结构可塑性以前未被探索的一个方面。我们的研究描绘了有效神经回路优化所需的时间上不同的信号通路。