Department of Biology, Stanford University, CA 94305, USA.
Neuron. 2011 May 26;70(4):742-57. doi: 10.1016/j.neuron.2011.04.002.
The assembly and maturation of neural circuits require a delicate balance between synapse formation and elimination. The cellular and molecular mechanisms that coordinate synaptogenesis and synapse elimination are poorly understood. In C. elegans, DD motoneurons respecify their synaptic connectivity during development by completely eliminating existing synapses and forming new synapses without changing cell morphology. Using loss- and gain-of-function genetic approaches, we demonstrate that CYY-1, a cyclin box-containing protein, drives synapse removal in this process. In addition, cyclin-dependent kinase-5 (CDK-5) facilitates new synapse formation by regulating the transport of synaptic vesicles to the sites of synaptogenesis. Furthermore, we show that coordinated activation of UNC-104/Kinesin3 and Dynein is required for patterning newly formed synapses. During the remodeling process, presynaptic components from eliminated synapses are recycled to new synapses, suggesting that signaling mechanisms and molecular motors link the deconstruction of existing synapses and the assembly of new synapses during structural synaptic plasticity.
神经回路的组装和成熟需要在突触形成和消除之间保持微妙的平衡。协调突触发生和突触消除的细胞和分子机制还知之甚少。在秀丽隐杆线虫中,DD 运动神经元在发育过程中通过完全消除现有的突触并形成新的突触而不改变细胞形态来重新指定其突触连接。通过使用基因敲除和过表达的遗传方法,我们证明了含有细胞周期蛋白盒的蛋白 CYY-1 驱动了这一过程中的突触去除。此外,细胞周期蛋白依赖性激酶-5 (CDK-5) 通过调节突触小泡向突触发生部位的运输来促进新突触的形成。此外,我们表明 UNC-104/动力蛋白 3 和动力蛋白的协调激活对于新形成的突触的模式形成是必需的。在重塑过程中,从消除的突触中回收了突触前成分,表明信号机制和分子马达将现有突触的解构与结构突触可塑性过程中新突触的组装联系起来。