Jiang Yanfei, AkhavanAghdam Zohreh, Tsimring Lev S, Hao Nan
Section of Molecular Biology, Division of Biological Sciences, La Jolla, California 92093.
BioCircuits Institute, University of California San Diego, La Jolla, California 92093.
J Biol Chem. 2017 Jul 28;292(30):12366-12372. doi: 10.1074/jbc.C117.800896. Epub 2017 Jun 21.
Information about environmental stimuli often can be encoded by the dynamics of signaling molecules or transcription factors. In the yeast , different types of stresses induce distinct nuclear translocation dynamics of the general stress-responsive transcription factor Msn2, but the underlying mechanisms remain unclear. Using deterministic and stochastic modeling, we reproduced the different dynamic responses of Msn2 to glucose limitation and osmotic stress observed and found that a positive feedback loop on protein kinase A mediated by the AMP-activated protein kinase Snf1 is coupled with a negative feedback loop to generate the characteristic pulsatile dynamics of Msn2. The model predicted that the stimulus-specific positive feedback loop could be responsible for the difference between Msn2 dynamics induced by glucose limitation and osmotic stress. This prediction was further verified experimentally by time-lapse microscopic examinations of the Δ strain. In this mutant lacking the Snf1-mediated positive feedback loop, Msn2 responds similarly to glucose limitation and osmotic stress, and its pulsatile translocation is largely abrogated. Our combined computational and experimental analysis reveals a regulatory mechanism by which cells can encode information about environmental cues into distinct signaling dynamics through stimulus-specific network architectures.
有关环境刺激的信息通常可由信号分子或转录因子的动态变化进行编码。在酵母中,不同类型的应激会诱导一般应激反应转录因子Msn2产生不同的核转位动态变化,但其潜在机制仍不清楚。通过确定性和随机建模,我们重现了观察到的Msn2对葡萄糖限制和渗透胁迫的不同动态反应,发现由AMP激活的蛋白激酶Snf1介导的蛋白激酶A上的正反馈环与负反馈环相结合,产生了Msn2特有的脉动动态变化。该模型预测,刺激特异性正反馈环可能是葡萄糖限制和渗透胁迫诱导的Msn2动态变化之间差异的原因。通过对Δ菌株的延时显微镜检查,这一预测进一步得到了实验验证。在这个缺乏Snf1介导的正反馈环的突变体中,Msn2对葡萄糖限制和渗透胁迫的反应相似,其脉动转位在很大程度上被消除。我们结合计算和实验分析揭示了一种调节机制,通过该机制细胞可以通过刺激特异性网络架构将有关环境线索的信息编码为不同的信号动态变化。