Suppr超能文献

用泊松-玻尔兹曼方程计算界面附近静电势时的数值困难。

Numerical Difficulties Computing Electrostatic Potentials Near Interfaces with the Poisson-Boltzmann Equation.

作者信息

Harris Robert C, Boschitsch Alexander H, Fenley Marcia O

机构信息

Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States.

Continuum-Dynamics Inc., 34 Lexington Avenue, Ewing, New Jersey 08618, United States.

出版信息

J Chem Theory Comput. 2017 Aug 8;13(8):3945-3951. doi: 10.1021/acs.jctc.7b00487. Epub 2017 Jul 17.

Abstract

Many researchers compute surface maps of the electrostatic potential (φ) with the Poisson-Boltzmann (PB) equation to relate the structural information obtained from X-ray and NMR experiments to biomolecular functions. Here we demonstrate that the usual method of obtaining these surface maps of φ, by interpolating from neighboring grid points on the solution grid generated by a PB solver, generates large errors because of the large discontinuity in the dielectric constant (and thus in the normal derivative of φ) at the surface. The Cartesian Poisson-Boltzmann solver contains several features that reduce the numerical noise in surface maps of φ: First, CPB introduces additional mesh points at the Cartesian grid/surface intersections where the PB equation is solved. This procedure ensures that the solution for interior mesh points only references nodes on the interior or on the surfaces; similarly for exterior points. Second, for added points on the surface, a second order least-squares reconstruction (LSR) is implemented that analytically incorporates the discontinuities at the surface. LSR is used both during the solution phase to compute φ at the surface and during postprocessing to obtain φ, induced charges, and ionic pressures. Third, it uses an adaptive grid where the finest grid cells are located near the molecular surface.

摘要

许多研究人员使用泊松-玻尔兹曼(PB)方程计算静电势(φ)的表面图,以便将从X射线和核磁共振实验获得的结构信息与生物分子功能联系起来。在这里,我们证明了通过对PB求解器生成的求解网格上的相邻网格点进行插值来获取这些φ表面图的常用方法会产生很大误差,这是因为表面处的介电常数(以及因此φ的法向导数)存在很大的不连续性。笛卡尔泊松-玻尔兹曼求解器具有几个减少φ表面图中数值噪声的特性:首先,CPB在求解PB方程的笛卡尔网格/表面交点处引入额外的网格点。此过程确保内部网格点的解仅引用内部或表面上的节点;外部点同理。其次,对于表面上添加的点,实施二阶最小二乘重建(LSR),它在分析上纳入了表面处的不连续性。LSR在求解阶段用于计算表面处的φ,在后处理阶段用于获得φ、感应电荷和离子压力。第三,它使用自适应网格,其中最精细的网格单元位于分子表面附近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验