Suppr超能文献

使用匹配界面和边界方法的多尺度分子动力学

Multiscale molecular dynamics using the matched interface and boundary method.

作者信息

Geng Weihua, Wei G W

机构信息

Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA.

出版信息

J Comput Phys. 2011 Jan 20;230(2):435-457. doi: 10.1016/j.jcp.2010.09.031.

Abstract

The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.

摘要

泊松-玻尔兹曼(PB)方程是用于生物分子和其他介电系统静电分析的成熟多尺度模型。基于PB的分子动力学(MD)方法有潜力处理大型生物系统。阻碍当前基于PB的MD方法发展的障碍在于准确性、稳定性、效率和可靠性方面的问题。复杂的溶剂-溶质界面、几何奇点和电荷奇点的存在给PB方程的数值求解以及基于PB的MD方法中的静电力评估带来了挑战。最近,匹配界面和边界(MIB)方法已被用于开发首个二阶精确的PB求解器,该求解器在处理不连续介电系数、复杂几何奇点和奇异源电荷时在数值上是稳定的。目前的工作使用MIB方法开发了基于PB的MD方法。推导了静电力的新公式,以允许使用清晰的分子表面。通过直接对静电势求导获得精确的反应场力。使用精确的笛卡尔网格表面积分方法在溶剂-溶质界面处评估介电边界力。位于凹角表面的静电力被适当地分配给相关原子。进行了广泛的数值测试以验证当前静电力计算的准确性和稳定性。新的基于PB的MD方法与AMBER软件包结合实现。通过几个示例系统展示了基于MIB的生物分子MD模拟。

相似文献

1
Multiscale molecular dynamics using the matched interface and boundary method.
J Comput Phys. 2011 Jan 20;230(2):435-457. doi: 10.1016/j.jcp.2010.09.031.
2
Treatment of charge singularities in implicit solvent models.
J Chem Phys. 2007 Sep 21;127(11):114106. doi: 10.1063/1.2768064.
3
Treatment of geometric singularities in implicit solvent models.
J Chem Phys. 2007 Jun 28;126(24):244108. doi: 10.1063/1.2743020.
5
Highly accurate biomolecular electrostatics in continuum dielectric environments.
J Comput Chem. 2008 Jan 15;29(1):87-97. doi: 10.1002/jcc.20769.
6
MIBPB: a software package for electrostatic analysis.
J Comput Chem. 2011 Mar;32(4):756-70. doi: 10.1002/jcc.21646. Epub 2010 Sep 15.
7
MIB Galerkin method for elliptic interface problems.
J Comput Appl Math. 2014 Dec 15;272:195-220. doi: 10.1016/j.cam.2014.05.014.
8
Bridging Eulerian and Lagrangian Poisson-Boltzmann solvers by ESES.
J Comput Chem. 2024 Mar 5;45(6):306-320. doi: 10.1002/jcc.27239. Epub 2023 Oct 13.
9
A Fast and Robust Poisson-Boltzmann Solver Based on Adaptive Cartesian Grids.
J Chem Theory Comput. 2011 May 10;7(5):1524-1540. doi: 10.1021/ct1006983.
10
Calculation of electrostatic free energy for the nonlinear Poisson-Boltzmann model based on the dimensionless potential.
J Comput Phys. 2024 Jan 15;497. doi: 10.1016/j.jcp.2023.112634. Epub 2024 Nov 14.

引用本文的文献

1
Calculation of solvation force in molecular dynamics simulation by deep-learning method.
Biophys J. 2024 Sep 3;123(17):2830-2838. doi: 10.1016/j.bpj.2024.02.029. Epub 2024 Mar 4.
2
Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2.
Chem Rev. 2022 Jul 13;122(13):11287-11368. doi: 10.1021/acs.chemrev.1c00965. Epub 2022 May 20.
3
MLIMC: Machine Learning-Based Implicit-Solvent Monte Carlo.
Chi J Chem Phys. 2021 Dec 27;34(6):683-694. doi: 10.1063/1674-0068/cjcp2109150.
4
Enriched gradient recovery for interface solutions of the Poisson-Boltzmann equation.
J Comput Phys. 2020 Nov 15;421. doi: 10.1016/j.jcp.2020.109725. Epub 2020 Jul 23.
6
Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents.
Front Mol Biosci. 2018 Mar 27;5:25. doi: 10.3389/fmolb.2018.00025. eCollection 2018.
7
Numerical interpretation of molecular surface field in dielectric modeling of solvation.
J Comput Chem. 2017 May 30;38(14):1057-1070. doi: 10.1002/jcc.24782. Epub 2017 Mar 20.
8
DelPhiForce, a tool for electrostatic force calculations: Applications to macromolecular binding.
J Comput Chem. 2017 Apr 5;38(9):584-593. doi: 10.1002/jcc.24715. Epub 2017 Jan 28.
10
Multidimensional persistence in biomolecular data.
J Comput Chem. 2015 Jul 30;36(20):1502-20. doi: 10.1002/jcc.23953. Epub 2015 May 30.

本文引用的文献

2
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Differential geometry based solvation model I: Eulerian formulation.
J Comput Phys. 2010 Nov 1;229(22):8231-8258. doi: 10.1016/j.jcp.2010.06.036.
4
Immersed finite element method and its applications to biological systems.
Comput Methods Appl Mech Eng. 2006 Feb 15;195(13-16):1722-1749. doi: 10.1016/j.cma.2005.05.049.
5
Differential geometry based multiscale models.
Bull Math Biol. 2010 Aug;72(6):1562-622. doi: 10.1007/s11538-010-9511-x. Epub 2010 Feb 19.
6
Quality Meshing of Implicit Solvation Models of Biomolecular Structures.
Comput Aided Geom Des. 2006 Aug 1;23(6):510-530. doi: 10.1016/j.cagd.2006.01.008.
7
Geometric and potential driving formation and evolution of biomolecular surfaces.
J Math Biol. 2009 Aug;59(2):193-231. doi: 10.1007/s00285-008-0226-7. Epub 2008 Oct 22.
8
Treatment of charge singularities in implicit solvent models.
J Chem Phys. 2007 Sep 21;127(11):114106. doi: 10.1063/1.2768064.
9
Treatment of geometric singularities in implicit solvent models.
J Chem Phys. 2007 Jun 28;126(24):244108. doi: 10.1063/1.2743020.
10
Minimal molecular surfaces and their applications.
J Comput Chem. 2008 Feb;29(3):380-91. doi: 10.1002/jcc.20796.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验