Hikichi Yasufumi, Mori Yuka, Ishikawa Shiho, Hayashi Kazusa, Ohnishi Kouhei, Kiba Akinori, Kai Kenji
Laboratory of Plant Pathology and Biotechnology, Kochi UniversityKochi, Japan.
Research Institute of Molecular Genetics, Kochi UniversityKochi, Japan.
Front Plant Sci. 2017 Jun 8;8:967. doi: 10.3389/fpls.2017.00967. eCollection 2017.
A soil-borne bacterium invading plant roots first colonizes the intercellular spaces of the root, and eventually enters xylem vessels, where it replicates at high levels leading to wilting symptoms. After invasion into intercellular spaces, strain OE1-1 attaches to host cells and expression of the genes encoding components of the type III secretion system (T3SS). OE1-1 then constructs T3SS and secrets effectors into host cells, inducing expression of the host gene encoding phosphatidic acid phosphatase. This leads to suppressing plant innate immunity. Then, OE1-1 grows on host cells, inducing quorum sensing (QS). The QS contributes to regulation of OE1-1 colonization of intercellular spaces including mushroom-type biofilm formation on host cells, leading to its virulence. strains AW1 and K60 produce methyl 3-hydroxypalmitate (3-OH PAME) as a QS signal. The methyltransferase PhcB synthesizes 3-OH PAME. When 3-OH PAME reaches a threshold level, it increases the ability of the histidine kinase PhcS to phosphorylate the response regulator PhcR. This results in elevated levels of functional PhcA, the global virulence regulator. On the other hand, strains OE1-1 and GMI1000 produce methyl 3-hydroxymyristate (3-OH MAME) as a QS signal. Among strains, the deduced PhcB and PhcS amino acid sequences are related to the production of QS signals. produces aryl-furanone secondary metabolites, ralfuranones, which are extracellularly secreted and required for its virulence, dependent on the QS. Interestingly, ralfuranones affect the QS feedback loop. Taken together, integrated signaling ralfuranones influences the QS, contributing to pathogen virulence.
一种土传细菌侵入植物根部后,首先定殖于根的细胞间隙,最终进入木质部导管,在那里大量繁殖导致萎蔫症状。侵入细胞间隙后,菌株OE1-1附着于宿主细胞并表达编码III型分泌系统(T3SS)组分的基因。然后,OE1-1构建T3SS并将效应蛋白分泌到宿主细胞中,诱导宿主编码磷脂酸磷酸酶的基因表达。这导致植物先天免疫受到抑制。接着,OE1-1在宿主细胞上生长,诱导群体感应(QS)。群体感应有助于调节OE1-1在细胞间隙的定殖,包括在宿主细胞上形成蘑菇型生物膜,从而导致其毒力。菌株AW1和K60产生3-羟基棕榈酸甲酯(3-OH PAME)作为群体感应信号。甲基转移酶PhcB合成3-OH PAME。当3-OH PAME达到阈值水平时,它会增加组氨酸激酶PhcS将应答调节因子PhcR磷酸化的能力。这导致全局毒力调节因子功能性PhcA的水平升高。另一方面,菌株OE1-1和GMI1000产生3-羟基肉豆蔻酸甲酯(3-OH MAME)作为群体感应信号。在这些菌株中,推导的PhcB和PhcS氨基酸序列与群体感应信号的产生有关。产生芳基呋喃酮类次生代谢产物拉尔呋喃酮,其分泌到细胞外,并且其毒力依赖于群体感应。有趣的是,拉尔呋喃酮影响群体感应反馈回路。综上所述,拉尔呋喃酮的整合信号影响群体感应,有助于病原体的毒力。