Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, University Medical Centre Freiburg, Mathildenstrasse 1, 79106, Freiburg, Germany.
University Children's Hospital and Children's Research Center, Zurich, Switzerland.
J Inherit Metab Dis. 2017 Jul;40(4):555-567. doi: 10.1007/s10545-017-0060-4. Epub 2017 Jun 22.
Cysteamine is a small aminothiol endogenously derived from coenzyme A degradation. For some decades, synthetic cysteamine has been employed for the treatment of cystinosis, and new uses of the drug continue to emerge. In this review, we discuss the role of cysteamine in cellular and extracellular homeostasis and focus on the potential use of aminothiols to reconstitute the function of proteins harboring arginine (Arg) to cysteine (Cys) mutations, via repair of the Cys residue into a moiety that introduces an amino group, as seen in basic amino acid residues Lys and Arg. Cysteamine has been utilized in vitro and ex vivo in four different genetic disorders, and thus provides "proof of principle" that aminothiols can modify Cys residues. Other aminothiols such as mercaptoethylguanidine (MEG) with closer structural resemblance to the guanidinium moiety of Arg are under examination for their predicted enhanced capacity to reconstitute loss of function. Although the use of aminothiols holds clinical potential, more studies are required to refine specificity and treatment design. The efficacy of aminothiols to target proteins may vary substantially depending on their specific extracellular and intracellular locations. Redox potential, pH, and specific aminothiol abundance in each physiological compartment are expected to influence the reactivity and turnover of cysteamine and analogous drugs. Upcoming research will require the use of suitable cell and animal models featuring Arg to Cys mutations. Since, in general, Arg to Cys changes comprise about 8% of missense mutations, repair of this specific mutation may provide promising avenues for many genetic diseases.
半胱胺是一种内源性的小分子硫醇,来源于辅酶 A 的降解。几十年来,合成半胱胺一直被用于治疗胱氨酸病,并且该药物的新用途仍在不断涌现。在这篇综述中,我们讨论了半胱胺在细胞内和细胞外稳态中的作用,并重点讨论了通过将 Arg 突变为 Cys 的残基修复为引入氨基的部分,从而恢复含 Arg 到 Cys 突变的蛋白质功能的方法,即使用氨基硫醇。半胱胺已在四种不同的遗传疾病的体外和离体条件下被应用,从而为“原理证明”提供了依据,即氨基硫醇可以修饰 Cys 残基。其他氨基硫醇,如与 Arg 的胍基部分结构更相似的巯基乙胍(MEG),因其被预测具有更强的恢复功能的能力而正在接受检验。尽管氨基硫醇的使用具有临床潜力,但仍需要更多的研究来改进其特异性和治疗设计。由于 Arg 突变为 Cys 的残基在每种生理环境中的具体位置不同,因此,氨基硫醇对蛋白质的作用可能存在很大差异。还原电势、pH 值和每种生理环境中特定的氨基硫醇丰度预计会影响半胱胺和类似药物的反应性和周转率。未来的研究将需要使用具有 Arg 到 Cys 突变的合适的细胞和动物模型。由于一般来说,Arg 到 Cys 的改变约占错义突变的 8%,因此修复这种特定的突变可能为许多遗传疾病提供有希望的途径。