Moreno-Sánchez R
J Biol Chem. 1985 Oct 15;260(23):12554-60.
The regulation of the rate of mitochondrial oxidative phosphorylation and arsenylation was studied at two external free Ca2+ concentrations. The rate of arsenate-stimulated respiration in absence of added ADP was not affected by external 10(-9) and 10(-6) M Ca2+ levels or carboxyatractyloside, while state 3 respiration was profoundly modified. In addition, the kinetic analysis showed that the rate of arsenylation in the presence of ADP was more efficient (Vm/Km ratio 3.5 times higher) in the catalytic process than phosphorylation. Therefore, this suggests that the activity of the ATP/ADP carrier is importantly controlled by Ca2+. The evaluation of the control in phosphorylation showed that the flux-control coefficients (Ci) exerted by the ATP/ADP carrier (ranged between 0.23 and 0.48) and the ATP synthase (0.05-0.57) were modified in a reciprocal way by Ca2+ and Pi concentrations. This suggests that these two enzymes are coupling sequentially through a common intermediate, the intramitochondrial ATP/ADP ratio. Other important steps controlling phosphorylation were the b-c1 complex (Ci = 0.30) and the cytochrome oxidase (Ci = 0.23) but they were not modified by Ca2+. It was also found that the main step controlling arsenylation was the ATP synthase (Ci = 0.74). The increment in the inorganic arsenate concentration induced a diminution in the control exerted by the ATP synthase (from 0.73 to 0.56). The results suggest that Ca2+ and Pi (or inorganic arsenate) could be regulated by ATP synthesis through an activating effect on ATP/ADP carrier and/or ATP synthase.