Suppr超能文献

正常和衰竭心脏中线粒体Ca2+的调节及其对能量代谢和氧化还原平衡的影响。

Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart.

作者信息

Liu Ting, O'Rourke Brian

机构信息

Institute of Molecular Cardiobiology, Division of Cardiology, The Johns Hopkins University, Baltimore, MD, USA.

出版信息

J Bioenerg Biomembr. 2009 Apr;41(2):127-32. doi: 10.1007/s10863-009-9216-8.

Abstract

Ca(2+) has been well accepted as a signal that coordinates changes in cytosolic workload with mitochondrial energy metabolism in cardiomyocytes. During increased work, Ca(2+) is accumulated in mitochondria and stimulates ATP production to match energy supply and demand. The kinetics of mitochondrial Ca(2+) (Ca(2+)) uptake remains unclear, and we review the debate on this subject in this article. Ca(2+) has multiple targets in oxidative phosphorylation including the F1/FO ATPase, the adenine nucleotide translocase, and Ca(2+)-sensitive dehydrogenases (CaDH) of the tricarboxylic acid (TCA) cycle. The well established effect of Ca(2+) is to activate CaDHs of the TCA cycle to increase NADH production. Maintaining NADH level is not only critical to keep a high oxidative phosphorylation rate during increased cardiac work, but is also necessary for the reducing system of the cell to maintain its reactive oxygen species (ROS) -scavenging capacity. Further, we review recent data demonstrating the deleterious effects of elevated Na(+) in cardiac pathology by blunting Ca(2+) accumulation.

摘要

钙离子(Ca(2+))作为一种信号,能够协调心肌细胞胞质工作负荷的变化与线粒体能量代谢,这一点已得到广泛认可。在工作负荷增加期间,Ca(2+)会在线粒体中积累,并刺激ATP生成,以匹配能量供需。线粒体Ca(2+)(Ca(2+))摄取的动力学仍不清楚,我们将在本文中回顾关于这一主题的争论。Ca(2+)在氧化磷酸化中有多个作用靶点,包括F1/FO ATP酶、腺嘌呤核苷酸转位酶以及三羧酸(TCA)循环中的Ca(2+)敏感脱氢酶(CaDH)。Ca(2+)的一个已被充分证实的作用是激活TCA循环的CaDH,以增加NADH的生成。维持NADH水平不仅对于在心脏工作负荷增加时保持高氧化磷酸化速率至关重要,而且对于细胞的还原系统维持其活性氧(ROS)清除能力也是必要的。此外,我们还回顾了近期的数据,这些数据表明在心脏病理状态下,升高的钠离子(Na(+))通过抑制Ca(2+)积累而产生有害影响。

相似文献

1
Regulation of mitochondrial Ca2+ and its effects on energetics and redox balance in normal and failing heart.
J Bioenerg Biomembr. 2009 Apr;41(2):127-32. doi: 10.1007/s10863-009-9216-8.
2
Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase.
Am J Physiol Cell Physiol. 2000 Feb;278(2):C423-35. doi: 10.1152/ajpcell.2000.278.2.C423.
3
Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes.
Circulation. 2010 Apr 13;121(14):1606-13. doi: 10.1161/CIRCULATIONAHA.109.914911. Epub 2010 Mar 29.
4
Calcium Signaling and Reactive Oxygen Species in Mitochondria.
Circ Res. 2018 May 11;122(10):1460-1478. doi: 10.1161/CIRCRESAHA.118.310082.
5
An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics.
Biophys J. 2003 Apr;84(4):2734-55. doi: 10.1016/S0006-3495(03)75079-6.
7
Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
Circ Res. 2008 Aug 1;103(3):279-88. doi: 10.1161/CIRCRESAHA.108.175919. Epub 2008 Jul 3.
8
Mitochondrial calcium and the regulation of metabolism in the heart.
J Mol Cell Cardiol. 2015 Jan;78:35-45. doi: 10.1016/j.yjmcc.2014.10.019. Epub 2014 Nov 7.
9
Mitochondrial inefficiencies and anoxic ATP hydrolysis capacities in diabetic rat heart.
Am J Physiol Cell Physiol. 2014 Sep 15;307(6):C499-507. doi: 10.1152/ajpcell.00006.2014. Epub 2014 Jun 11.
10
Mitochondrial energetics and calcium coupling in the heart.
J Physiol. 2017 Jun 15;595(12):3753-3763. doi: 10.1113/JP273609. Epub 2017 Mar 10.

引用本文的文献

1
Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases.
Cell Mol Biol Lett. 2024 Dec 18;29(1):153. doi: 10.1186/s11658-024-00669-4.
2
Testosterone deficiency impairs cardiac interfibrillar mitochondrial function and myocardial contractility while inducing oxidative stress.
Front Endocrinol (Lausanne). 2023 Sep 13;14:1206387. doi: 10.3389/fendo.2023.1206387. eCollection 2023.
3
Bag3 Regulates Mitochondrial Function and the Inflammasome Through Canonical and Noncanonical Pathways in the Heart.
JACC Basic Transl Sci. 2023 Apr 19;8(7):820-839. doi: 10.1016/j.jacbts.2022.12.013. eCollection 2023 Jul.
5
Mitochondrial Dysfunction in Cardiac Arrhythmias.
Cells. 2023 Feb 21;12(5):679. doi: 10.3390/cells12050679.
6
The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease.
Pharmaceutics. 2022 Dec 9;14(12):2760. doi: 10.3390/pharmaceutics14122760.
8
Neurohormonal connections with mitochondria in cardiomyopathy and other diseases.
Am J Physiol Cell Physiol. 2022 Aug 1;323(2):C461-C477. doi: 10.1152/ajpcell.00167.2022. Epub 2022 Jun 27.
9
MCU Overexpression Rescues Inotropy and Reverses Heart Failure by Reducing SR Ca Leak.
Circ Res. 2021 Apr 16;128(8):1191-1204. doi: 10.1161/CIRCRESAHA.120.318562. Epub 2021 Feb 1.
10
TNFα induces mitochondrial fragmentation and biogenesis in human airway smooth muscle.
Am J Physiol Lung Cell Mol Physiol. 2021 Jan 1;320(1):L137-L151. doi: 10.1152/ajplung.00305.2020. Epub 2020 Nov 4.

本文引用的文献

1
Mitochondrial Ca2+ uptake: tortoise or hare?
J Mol Cell Cardiol. 2009 Jun;46(6):767-74. doi: 10.1016/j.yjmcc.2008.12.011. Epub 2008 Dec 31.
2
The role of Na dysregulation in cardiac disease and how it impacts electrophysiology.
Drug Discov Today Dis Models. 2007;4(4):207-217. doi: 10.1016/j.ddmod.2007.11.003.
3
Enhancing mitochondrial Ca2+ uptake in myocytes from failing hearts restores energy supply and demand matching.
Circ Res. 2008 Aug 1;103(3):279-88. doi: 10.1161/CIRCRESAHA.108.175919. Epub 2008 Jul 3.
4
Excitation-contraction coupling and mitochondrial energetics.
Basic Res Cardiol. 2007 Sep;102(5):369-92. doi: 10.1007/s00395-007-0666-z. Epub 2007 Jul 27.
5
Free radicals and antioxidants in normal physiological functions and human disease.
Int J Biochem Cell Biol. 2007;39(1):44-84. doi: 10.1016/j.biocel.2006.07.001. Epub 2006 Aug 4.
8
Integration of rapid cytosolic Ca2+ signals by mitochondria in cat ventricular myocytes.
Am J Physiol Cell Physiol. 2006 Nov;291(5):C840-50. doi: 10.1152/ajpcell.00619.2005. Epub 2006 May 24.
9
Calcium-mediated coupling between mitochondrial substrate dehydrogenation and cardiac workload in single guinea-pig ventricular myocytes.
J Mol Cell Cardiol. 2006 Mar;40(3):394-404. doi: 10.1016/j.yjmcc.2005.12.012. Epub 2006 Feb 9.
10
Cardiac system bioenergetics: metabolic basis of the Frank-Starling law.
J Physiol. 2006 Mar 1;571(Pt 2):253-73. doi: 10.1113/jphysiol.2005.101444. Epub 2006 Jan 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验