Medical University of South Carolina, Charleston, SC, USA.
Neuroimage. 2018 Oct 15;180(Pt A):188-202. doi: 10.1016/j.neuroimage.2017.06.035. Epub 2017 Jun 20.
We introduce the feature-weighted receptive field (fwRF), an encoding model designed to balance expressiveness, interpretability and scalability. The fwRF is organized around the notion of a feature map-a transformation of visual stimuli into visual features that preserves the topology of visual space (but not necessarily the native resolution of the stimulus). The key assumption of the fwRF model is that activity in each voxel encodes variation in a spatially localized region across multiple feature maps. This region is fixed for all feature maps; however, the contribution of each feature map to voxel activity is weighted. Thus, the model has two separable sets of parameters: "where" parameters that characterize the location and extent of pooling over visual features, and "what" parameters that characterize tuning to visual features. The "where" parameters are analogous to classical receptive fields, while "what" parameters are analogous to classical tuning functions. By treating these as separable parameters, the fwRF model complexity is independent of the resolution of the underlying feature maps. This makes it possible to estimate models with thousands of high-resolution feature maps from relatively small amounts of data. Once a fwRF model has been estimated from data, spatial pooling and feature tuning can be read-off directly with no (or very little) additional post-processing or in-silico experimentation. We describe an optimization algorithm for estimating fwRF models from data acquired during standard visual neuroimaging experiments. We then demonstrate the model's application to two distinct sets of features: Gabor wavelets and features supplied by a deep convolutional neural network. We show that when Gabor feature maps are used, the fwRF model recovers receptive fields and spatial frequency tuning functions consistent with known organizational principles of the visual cortex. We also show that a fwRF model can be used to regress entire deep convolutional networks against brain activity. The ability to use whole networks in a single encoding model yields state-of-the-art prediction accuracy. Our results suggest a wide variety of uses for the feature-weighted receptive field model, from retinotopic mapping with natural scenes, to regressing the activities of whole deep neural networks onto measured brain activity.
我们介绍了特征加权感受野(fwRF),这是一种旨在平衡表达能力、可解释性和可扩展性的编码模型。fwRF 的组织围绕着特征图的概念——将视觉刺激转换为保留视觉空间拓扑结构(但不一定保留刺激的原始分辨率)的视觉特征。fwRF 模型的关键假设是,每个体素的活动编码了多个特征图中空间局部区域的变化。该区域对于所有特征图都是固定的;但是,每个特征图对体素活动的贡献是加权的。因此,该模型有两个可分离的参数集:“在哪里”参数,用于描述在视觉特征上进行池化的位置和范围;“是什么”参数,用于描述对视觉特征的调谐。“在哪里”参数类似于经典感受野,而“是什么”参数类似于经典调谐函数。通过将这些参数视为可分离的参数,fwRF 模型的复杂度与基础特征图的分辨率无关。这使得可以从小量数据中估计具有数千个高分辨率特征图的模型。一旦从数据中估计了 fwRF 模型,就可以直接读取空间池化和特征调谐,而无需(或很少)进行额外的后处理或计算机实验。我们描述了一种从标准视觉神经影像学实验中获取的数据中估计 fwRF 模型的优化算法。然后,我们展示了该模型在两组不同特征中的应用:Gabor 小波和由深度卷积神经网络提供的特征。我们表明,当使用 Gabor 特征图时,fwRF 模型恢复的感受野和空间频率调谐函数与视觉皮层的已知组织原则一致。我们还表明,fwRF 模型可用于将整个深度卷积网络回归到大脑活动。在单个编码模型中使用整个网络的能力可产生最先进的预测精度。我们的结果表明,特征加权感受野模型具有广泛的用途,从使用自然场景的视网膜映射,到将整个深度神经网络的活动回归到测量的大脑活动。