Suppr超能文献

为细胞机械转导增添维度:多轴细胞拉伸系统的生物医学工程进展及其在心血管生物力学和机械信号传导中的应用

Adding dimension to cellular mechanotransduction: Advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling.

作者信息

Friedrich O, Schneidereit D, Nikolaev Y A, Nikolova-Krstevski V, Schürmann S, Wirth-Hücking A, Merten A L, Fatkin D, Martinac B

机构信息

Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; Victor Chang Cardiac Research Institute, Sydney, 2010 NSW, Australia; Erlangen Graduate School in Advanced Optical Technologie (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany; Muscle Research Center Erlangen (MURCE), Friedrich-Alexander University Erlangen-Nürnberg, Germany.

Institute of Medical Biotechnology, Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 3, 91052 Erlangen, Germany; Erlangen Graduate School in Advanced Optical Technologie (SAOT), Friedrich-Alexander-University Erlangen-Nürnberg, Paul-Gordan-Str. 7, 91052 Erlangen, Germany.

出版信息

Prog Biophys Mol Biol. 2017 Nov;130(Pt B):170-191. doi: 10.1016/j.pbiomolbio.2017.06.011. Epub 2017 Jun 21.

Abstract

Hollow organs (e.g. heart) experience pressure-induced mechanical wall stress sensed by molecular mechano-biosensors, including mechanosensitive ion channels, to translate into intracellular signaling. For direct mechanistic studies, stretch devices to apply defined extensions to cells adhered to elastomeric membranes have stimulated mechanotransduction research. However, most engineered systems only exploit unilateral cellular stretch. In addition, it is often taken for granted that stretch applied by hardware translates 1:1 to the cell membrane. However, the latter crucially depends on the tightness of the cell-substrate junction by focal adhesion complexes and is often not calibrated for. In the heart, (increased) hemodynamic volume/pressure load is associated with (increased) multiaxial wall tension, stretching individual cardiomyocytes in multiple directions. To adequately study cellular models of chronic organ distension on a cellular level, biomedical engineering faces challenges to implement multiaxial cell stretch systems that allow observing cell reactions to stretch during live-cell imaging, and to calibrate for hardware-to-cell membrane stretch translation. Here, we review mechanotransduction, cell stretch technologies from uni-to multiaxial designs in cardio-vascular research, and the importance of the stretch substrate-cell membrane junction. We also present new results using our IsoStretcher to demonstrate mechanosensitivity of Piezo1 in HEK293 cells and stretch-induced Ca entry in 3D-hydrogel-embedded cardiomyocytes.

摘要

中空器官(如心脏)会经历由分子机械生物传感器(包括机械敏感离子通道)感知的压力诱导机械壁应力,从而转化为细胞内信号传导。对于直接的机制研究,将特定延伸施加到附着于弹性膜的细胞上的拉伸装置推动了机械转导研究。然而,大多数工程系统仅利用单侧细胞拉伸。此外,人们常常想当然地认为硬件施加的拉伸会与细胞膜呈1:1转换。然而,后者关键取决于粘着斑复合物形成的细胞 - 底物连接的紧密程度,并且通常未对此进行校准。在心脏中,(增加的)血液动力学容积/压力负荷与(增加的)多轴壁张力相关,使单个心肌细胞在多个方向上伸展。为了在细胞水平上充分研究慢性器官扩张的细胞模型,生物医学工程面临着实施多轴细胞拉伸系统的挑战,该系统要能够在活细胞成像过程中观察细胞对拉伸的反应,并校准硬件到细胞膜的拉伸转换。在这里,我们综述了机械转导、心血管研究中从单轴到多轴设计的细胞拉伸技术以及拉伸底物 - 细胞膜连接的重要性。我们还展示了使用我们的等张拉伸仪获得的新结果,以证明Piezo1在HEK293细胞中的机械敏感性以及在三维水凝胶包埋的心肌细胞中拉伸诱导的钙内流。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验