Kah Delf, Winterl Alexander, Přechová Magdalena, Schöler Ulrike, Schneider Werner, Friedrich Oliver, Gregor Martin, Fabry Ben
Biophysics Group, Department of Physics, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
HardwareX. 2020 Dec 9;9:e00162. doi: 10.1016/j.ohx.2020.e00162. eCollection 2021 Apr.
Cells in the lungs, the heart, and numerous other organs, are constantly exposed to dynamic forces and deformations. To mimic these dynamic mechanical loading conditions and to study the resulting cellular responses such as morphological changes or the activation of biochemical signaling pathways, cells are typically seeded on flexible 2D substrates that are uniaxially or biaxially stretched. Here, we present an open-source cell stretcher built from parts of an Anet A8 3D printer. The cell stretcher is controlled by a fully programmable open-source software using GCode and Python. Up to six flexible optically clear substrates can be stretched simultaneously, allowing for comparative multi-batch biological studies including microscopic image analysis. The cell yield from the cell culture area of 4 cm per substrate is sufficient for Western-blot protein analysis. As a proof-of-concept, we study the activation of the Yes-associated protein (YAP) mechanotransduction pathway in response to increased cytoskeletal tension induced by uniaxial stretching of epithelial cells. Our data support the previously observed activation of the YAP transcription pathway by stretch-induced increase in cytoskeletal tension and demonstrate the suitability of the cell stretcher to study complex mechano-biological processes.
肺部、心脏以及许多其他器官中的细胞,不断受到动态力和变形的影响。为了模拟这些动态机械加载条件,并研究由此产生的细胞反应,如形态变化或生化信号通路的激活,细胞通常接种在可单轴或双轴拉伸的柔性二维基质上。在此,我们展示了一种由Anet A8 3D打印机的部件构建的开源细胞拉伸器。该细胞拉伸器由使用GCode和Python的完全可编程开源软件控制。最多可同时拉伸六个柔性光学透明基质,从而允许进行包括微观图像分析在内的比较多批次生物学研究。每个基质4平方厘米的细胞培养面积所产生的细胞产量足以用于蛋白质免疫印迹分析。作为概念验证,我们研究了响应上皮细胞单轴拉伸诱导的细胞骨架张力增加时Yes相关蛋白(YAP)机械转导通路的激活情况。我们的数据支持了先前观察到的拉伸诱导的细胞骨架张力增加激活YAP转录通路的现象,并证明了该细胞拉伸器适用于研究复杂的机械生物学过程。