Analytical Chemistry-Center for Electrochemical Sciences, CES, Ruhr-Universität Bochum, 44780, Bochum, Germany.
Advanced Polymer Materials Group, University "Politehnica" of Bucharest, 1-7 Gh. Polizu Street, 011061, Bucharest, Romania.
Angew Chem Int Ed Engl. 2017 Sep 4;56(37):11258-11262. doi: 10.1002/anie.201705385. Epub 2017 Aug 11.
Highly active electrocatalysts for the oxygen evolution (OER) reaction are in most cases powder nanomaterials, which undergo substantial changes upon applying the high potentials required for high-current-density oxygen evolution. Owing to the vigorous gas evolution, the durability under OER conditions is disappointingly low for most powder electrocatalysts as there are no strategies to securely fix powder catalysts onto electrode surfaces. Thus reliable studies of catalysts during or after the OER are often impaired. Herein, we propose the use of composites made from precursors of polybenzoxazines and organophilically modified NiFe layered double hydroxides (LDHs) to form a stable and highly conducting catalyst layer, which allows the study of the catalyst before and after electrocatalysis. Characterization of the material by XRD, SEM, and TEM before and after 100 h electrolysis in 5 m KOH at 60 °C and a current density of 200 mA cm revealed previously not observed structural changes.
在大多数情况下,用于析氧反应(OER)的高效电催化剂是粉末纳米材料,在施加高电流密度析氧所需的高电势时,会发生显著变化。由于剧烈的气体析出,大多数粉末电催化剂在 OER 条件下的耐久性令人失望地低,因为没有策略可以将粉末催化剂牢固地固定在电极表面上。因此,在 OER 期间或之后对催化剂进行可靠的研究通常会受到影响。在此,我们提出使用聚苯并恶嗪前体和有机改性 NiFe 层状双氢氧化物(LDHs)制成的复合材料来形成稳定且高导电性的催化剂层,从而可以在电催化之前和之后研究催化剂。通过 XRD、SEM 和 TEM 对材料进行表征,结果表明,在 60°C 和 200 mA·cm-2 的电流密度下,在 5 m KOH 中电解 100 h 前后,材料没有观察到先前未观察到的结构变化。