IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2960-2972. doi: 10.1109/TNNLS.2017.2709910. Epub 2017 Jun 22.
A new parametric approach is proposed for nonlinear and nonstationary system identification based on a time-varying nonlinear autoregressive with exogenous input (TV-NARX) model. The TV coefficients of the TV-NARX model are expanded using multiwavelet basis functions, and the model is thus transformed into a time-invariant regression problem. An ultra-orthogonal forward regression (UOFR) algorithm aided by mutual information (MI) is designed to identify a parsimonious model structure and estimate the associated model parameters. The UOFR-MI algorithm, which uses not only the observed data themselves but also weak derivatives of the signals, is more powerful in model structure detection. The proposed approach combining the advantages of both the basis function expansion method and the UOFR-MI algorithm is proved to be capable of tracking the change of TV parameters effectively in both numerical simulations and the real EEG data.
提出了一种新的基于时变非线性自回归输入(TV-NARX)模型的非线性非平稳系统辨识的参数化方法。使用多小波基函数扩展 TV-NARX 模型的 TV 系数,从而将模型转换为时不变回归问题。设计了一种超正交前向回归(UOFR)算法,并借助互信息(MI)来识别简约的模型结构并估计相关的模型参数。UOFR-MI 算法不仅使用观测数据本身,还使用信号的弱导数,因此在模型结构检测方面更具优势。所提出的方法结合了基函数扩展方法和 UOFR-MI 算法的优点,被证明能够有效地跟踪数值模拟和真实 EEG 数据中 TV 参数的变化。