Suppr超能文献

从神经生理信号进行神经系统的非线性系统辨识。

Nonlinear System Identification of Neural Systems from Neurophysiological Signals.

机构信息

Centre for Data Science, Coventry University, Coventry CV1 2JH, UK.

Stephenson School of Biomedical Engineering, The University of Oklahoma, Tulsa, OK 74135, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Laureate Institute for Brain Research, Tulsa, OK 74136, USA.

出版信息

Neuroscience. 2021 Mar 15;458:213-228. doi: 10.1016/j.neuroscience.2020.12.001. Epub 2020 Dec 11.

Abstract

The human nervous system is one of the most complicated systems in nature. Complex nonlinear behaviours have been shown from the single neuron level to the system level. For decades, linear connectivity analysis methods, such as correlation, coherence and Granger causality, have been extensively used to assess the neural connectivities and input-output interconnections in neural systems. Recent studies indicate that these linear methods can only capture a certain amount of neural activities and functional relationships, and therefore cannot describe neural behaviours in a precise or complete way. In this review, we highlight recent advances in nonlinear system identification of neural systems, corresponding time and frequency domain analysis, and novel neural connectivity measures based on nonlinear system identification techniques. We argue that nonlinear modelling and analysis are necessary to study neuronal processing and signal transfer in neural systems quantitatively. These approaches can hopefully provide new insights to advance our understanding of neurophysiological mechanisms underlying neural functions. These nonlinear approaches also have the potential to produce sensitive biomarkers to facilitate the development of precision diagnostic tools for evaluating neurological disorders and the effects of targeted intervention.

摘要

人类神经系统是自然界中最复杂的系统之一。从单个神经元水平到系统水平,已经显示出复杂的非线性行为。几十年来,线性连接分析方法,如相关性、相干性和格兰杰因果关系,已被广泛用于评估神经网络中的神经连接和输入-输出互连。最近的研究表明,这些线性方法只能捕捉到一定数量的神经活动和功能关系,因此不能精确或完整地描述神经行为。在这篇综述中,我们强调了神经系统非线性系统识别、相应的时频域分析以及基于非线性系统识别技术的新型神经连接度量的最新进展。我们认为,非线性建模和分析对于定量研究神经系统中的神经元处理和信号传递是必要的。这些方法有望为我们深入了解神经功能的神经生理机制提供新的见解。这些非线性方法也有可能产生敏感的生物标志物,以促进开发用于评估神经障碍和靶向干预效果的精确诊断工具。

相似文献

1
Nonlinear System Identification of Neural Systems from Neurophysiological Signals.
Neuroscience. 2021 Mar 15;458:213-228. doi: 10.1016/j.neuroscience.2020.12.001. Epub 2020 Dec 11.
2
A nonlinear causality measure in the frequency domain: nonlinear partial directed coherence with applications to EEG.
J Neurosci Methods. 2014 Mar 30;225:71-80. doi: 10.1016/j.jneumeth.2014.01.013. Epub 2014 Jan 25.
3
Nonlinear connectivity by Granger causality.
Neuroimage. 2011 Sep 15;58(2):330-8. doi: 10.1016/j.neuroimage.2010.01.099. Epub 2010 Feb 2.
4
Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method.
BMC Neurosci. 2020 Feb 12;21(1):7. doi: 10.1186/s12868-020-0555-z.
5
A nonlinear generalization of spectral Granger causality.
IEEE Trans Biomed Eng. 2014 Jun;61(6):1693-701. doi: 10.1109/TBME.2014.2300636.
6
Hybrid Cubature Kalman filtering for identifying nonlinear models from sampled recording: Estimation of neuronal dynamics.
PLoS One. 2017 Jul 20;12(7):e0181513. doi: 10.1371/journal.pone.0181513. eCollection 2017.
7
Estimation of direct nonlinear effective connectivity using information theory and multilayer perceptron.
J Neurosci Methods. 2014 May 30;229:53-67. doi: 10.1016/j.jneumeth.2014.04.008. Epub 2014 Apr 19.
9
Linear and nonlinear causality between signals: methods, examples and neurophysiological applications.
Biol Cybern. 2006 Oct;95(4):349-69. doi: 10.1007/s00422-006-0098-0. Epub 2006 Aug 23.
10
Time-varying linear and nonlinear parametric model for Granger causality analysis.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 1):041906. doi: 10.1103/PhysRevE.85.041906. Epub 2012 Apr 10.

引用本文的文献

3
The contagion of neurologic Immersion predicts retail purchases.
Front Neurosci. 2025 Mar 12;19:1533784. doi: 10.3389/fnins.2025.1533784. eCollection 2025.
8
Connectome-based prediction of functional impairment in experimental stroke models.
PLoS One. 2024 Dec 19;19(12):e0310743. doi: 10.1371/journal.pone.0310743. eCollection 2024.
10
Neural mechanisms of adaptive behavior: Dissociating local cortical modulations and interregional communication patterns.
iScience. 2024 Sep 20;27(10):110995. doi: 10.1016/j.isci.2024.110995. eCollection 2024 Oct 18.

本文引用的文献

1
Neural Granger Causality.
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4267-4279. doi: 10.1109/TPAMI.2021.3065601. Epub 2022 Jul 1.
2
Slowly activating outward membrane currents generate input-output sub-harmonic cross frequency coupling in neurons.
J Theor Biol. 2021 Jan 21;509:110509. doi: 10.1016/j.jtbi.2020.110509. Epub 2020 Oct 3.
3
Nonlinear Modeling of Cortical Responses to Mechanical Wrist Perturbations Using the NARMAX Method.
IEEE Trans Biomed Eng. 2021 Mar;68(3):948-958. doi: 10.1109/TBME.2020.3013545. Epub 2021 Feb 18.
4
Assessing Neural Connectivity and Associated Time Delays of Muscle Responses to Continuous Position Perturbations.
Ann Biomed Eng. 2021 Jan;49(1):432-440. doi: 10.1007/s10439-020-02573-2. Epub 2020 Jul 23.
6
Quantifying Altered Neural Connectivity of the Stretch Reflex in Chronic Hemiparetic Stroke.
IEEE Trans Neural Syst Rehabil Eng. 2020 Jun;28(6):1436-1441. doi: 10.1109/TNSRE.2020.2986304. Epub 2020 Apr 7.
7
Measuring the Non-linear Directed Information Flow in Schizophrenia by Multivariate Transfer Entropy.
Front Comput Neurosci. 2020 Jan 10;13:85. doi: 10.3389/fncom.2019.00085. eCollection 2019.
8
Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation.
Front Syst Neurosci. 2020 Jan 14;13:86. doi: 10.3389/fnsys.2019.00086. eCollection 2019.
9
Quantifying the Nonlinear Interaction in the Nervous System Based on Phase-Locked Amplitude Relationship.
IEEE Trans Biomed Eng. 2020 Sep;67(9):2638-2645. doi: 10.1109/TBME.2020.2967079. Epub 2020 Jan 16.
10
Establishing functional brain networks using a nonlinear partial directed coherence method to predict epileptic seizures.
J Neurosci Methods. 2020 Jan 1;329:108447. doi: 10.1016/j.jneumeth.2019.108447. Epub 2019 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验