Suppr超能文献

高粱根内皮层中二氧化硅聚集体的形成由细胞壁结构和发育预先决定。

Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development.

作者信息

Soukup Milan, Martinka Michal, Bosnic Dragana, Caplovicová Mária, Elbaum Rivka, Lux Alexander

机构信息

Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 84215 Bratislava, Slovak Republic.

The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100 Rehovot, Israel.

出版信息

Ann Bot. 2017 Nov 10;120(5):739-753. doi: 10.1093/aob/mcx060.

Abstract

BACKGROUND AND AIMS

Deposition of silica in plant cell walls improves their mechanical properties and helps plants to withstand various stress conditions. Its mechanism is still not understood and silica-cell wall interactions are elusive. The objective of this study was to investigate the effect of silica deposition on the development and structure of sorghum root endodermis and to identify the cell wall components involved in silicification.

METHODS

Sorghum bicolor seedlings were grown hydroponically with (Si+) or without (Si-) silicon supplementation. Primary roots were used to investigate the transcription of silicon transporters by quantitative RT-PCR. Silica aggregation was induced also under in vitro conditions in detached root segments. The development and architecture of endodermal cell walls were analysed by histochemistry, microscopy and Raman spectroscopy. Water retention capability was compared between silicified and non-silicified roots. Raman spectroscopy analyses of isolated silica aggregates were also carried out.

KEY RESULTS

Active uptake of silicic acid is provided at the root apex, where silicon transporters Lsi1 and Lsi2 are expressed. The locations of silica aggregation are established during the development of tertiary endodermal cell walls, even in the absence of silicon. Silica aggregation takes place in non-lignified spots in the endodermal cell walls, which progressively accumulate silicic acid, and its condensation initiates at arabinoxylan-ferulic acid complexes. Silicification does not support root water retention capability; however, it decreases root growth inhibition imposed by desiccation.

CONCLUSION

A model is proposed in which the formation of silica aggregates in sorghum roots is predetermined by a modified cell wall architecture and takes place as governed by endodermal development. The interaction with silica is provided by arabinoxylan-ferulic acid complexes and interferes with further deposition of lignin. Due to contrasting hydrophobicity, silicification and lignification do not represent functionally equivalent modifications of plant cell walls.

摘要

背景与目的

二氧化硅在植物细胞壁中的沉积可改善其机械性能,并帮助植物抵御各种胁迫条件。其机制仍不明确,二氧化硅与细胞壁的相互作用也难以捉摸。本研究的目的是调查二氧化硅沉积对高粱根内皮层发育和结构的影响,并确定参与硅化作用的细胞壁成分。

方法

将双色高粱幼苗在添加(Si+)或不添加(Si-)硅的水培条件下培养。用主根通过定量RT-PCR研究硅转运蛋白的转录。在离体根段的体外条件下也诱导二氧化硅聚集。通过组织化学、显微镜和拉曼光谱分析内皮层细胞壁的发育和结构。比较硅化和未硅化根的保水能力。还对分离出的二氧化硅聚集体进行了拉曼光谱分析。

主要结果

在根尖处提供了硅酸的主动吸收,此处表达硅转运蛋白Lsi1和Lsi2。即使在没有硅的情况下,二氧化硅聚集的位置也在三生内皮层细胞壁发育过程中确定。二氧化硅聚集发生在内皮层细胞壁的非木质化部位,这些部位逐渐积累硅酸,其缩合在阿拉伯木聚糖-阿魏酸复合物处开始。硅化作用不支持根的保水能力;然而,它减少了干燥对根生长的抑制。

结论

提出了一个模型,其中高粱根中二氧化硅聚集体的形成由修饰的细胞壁结构预先决定,并在内皮层发育的控制下发生。与二氧化硅的相互作用由阿拉伯木聚糖-阿魏酸复合物提供,并干扰木质素的进一步沉积。由于疏水性不同,硅化和木质化并不代表植物细胞壁在功能上等效的修饰。

相似文献

2
Formation of root silica aggregates in sorghum is an active process of the endodermis.
J Exp Bot. 2020 Dec 2;71(21):6807-6817. doi: 10.1093/jxb/erz387.
3
Unique lignin modifications pattern the nucleation of silica in sorghum endodermis.
J Exp Bot. 2020 Dec 2;71(21):6818-6829. doi: 10.1093/jxb/eraa127.
4
Hydrogen peroxide modulates silica deposits in sorghum roots.
J Exp Bot. 2022 Mar 2;73(5):1450-1463. doi: 10.1093/jxb/erab497.
5
Deposition of silica in sorghum root endodermis modifies the chemistry of associated lignin.
Front Plant Sci. 2024 Apr 3;15:1370479. doi: 10.3389/fpls.2024.1370479. eCollection 2024.
6
The dynamics of silicon deposition in the sorghum root endodermis.
New Phytol. 2003 Jun;158(3):437-441. doi: 10.1046/j.1469-8137.2003.00764.x.
7
Mechanism of silica deposition in sorghum silica cells.
New Phytol. 2017 Jan;213(2):791-798. doi: 10.1111/nph.14173. Epub 2016 Sep 13.
8
Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance.
Physiol Plant. 2002 May;115(1):87-92. doi: 10.1034/j.1399-3054.2002.1150110.x.
9
Silicon-induced changes in viscoelastic properties of sorghum root cell walls.
Plant Cell Physiol. 2003 Jul;44(7):743-9. doi: 10.1093/pcp/pcg090.
10
Silicification of Root Tissues.
Plants (Basel). 2020 Jan 15;9(1):111. doi: 10.3390/plants9010111.

引用本文的文献

1
Biosilicification in monocots: Comparative analysis highlights contrasting patterns of deposition.
Am J Bot. 2025 Jul;112(7):e70074. doi: 10.1002/ajb2.70074. Epub 2025 Jul 17.
2
Biomineral-Based Composite Materials in Regenerative Medicine.
Int J Mol Sci. 2024 Jun 2;25(11):6147. doi: 10.3390/ijms25116147.
3
The Physiological and Molecular Mechanisms of Silicon Action in Salt Stress Amelioration.
Plants (Basel). 2024 Feb 15;13(4):525. doi: 10.3390/plants13040525.
4
Do Antimonite and Silicon Share the Same Root Uptake Pathway by Lsi1 in L. Moench?
Plants (Basel). 2023 Jun 19;12(12):2368. doi: 10.3390/plants12122368.
5
Comprehensive Study of Si-Based Compounds in Selected Plants ( L., L., L.).
Molecules. 2023 May 24;28(11):4311. doi: 10.3390/molecules28114311.
6
Silica deposition in plants: scaffolding the mineralization.
Ann Bot. 2023 Jul 10;131(6):897-908. doi: 10.1093/aob/mcad056.
7
Silicon in action: Between iron scarcity and excess copper.
Front Plant Sci. 2023 Feb 3;14:1039053. doi: 10.3389/fpls.2023.1039053. eCollection 2023.
10
Functions of silicon in plant drought stress responses.
Hortic Res. 2021 Dec 1;8(1):254. doi: 10.1038/s41438-021-00681-1.

本文引用的文献

1
The dynamics of silicon deposition in the sorghum root endodermis.
New Phytol. 2003 Jun;158(3):437-441. doi: 10.1046/j.1469-8137.2003.00764.x.
2
The Plant Cell Wall: A Complex and Dynamic Structure As Revealed by the Responses of Genes under Stress Conditions.
Front Plant Sci. 2016 Aug 10;7:984. doi: 10.3389/fpls.2016.00984. eCollection 2016.
3
Silicon and the Plant Extracellular Matrix.
Front Plant Sci. 2016 Apr 12;7:463. doi: 10.3389/fpls.2016.00463. eCollection 2016.
4
Waterproofing in Arabidopsis: Following Phenolics and Lipids In situ by Confocal Raman Microscopy.
Front Chem. 2016 Feb 29;4:10. doi: 10.3389/fchem.2016.00010. eCollection 2016.
5
A novel method to characterize silica bodies in grasses.
Plant Methods. 2016 Jan 21;12:3. doi: 10.1186/s13007-016-0108-8. eCollection 2016.
6
A possible mechanism of biological silicification in plants.
Front Plant Sci. 2015 Oct 9;6:853. doi: 10.3389/fpls.2015.00853. eCollection 2015.
8
Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes.
PLoS One. 2015 Sep 18;10(9):e0138555. doi: 10.1371/journal.pone.0138555. eCollection 2015.
9
Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11401-6. doi: 10.1073/pnas.1508987112. Epub 2015 Aug 17.
10
A cooperative system of silicon transport in plants.
Trends Plant Sci. 2015 Jul;20(7):435-42. doi: 10.1016/j.tplants.2015.04.007. Epub 2015 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验