Suppr超能文献

美罗培南-法硼巴坦对 2014 年期间全球收集的当代革兰氏阴性分离株进行了测试,包括耐碳青霉烯类、产 KPC、多药耐药和广泛耐药的肠杆菌科。

Meropenem-Vaborbactam Tested against Contemporary Gram-Negative Isolates Collected Worldwide during 2014, Including Carbapenem-Resistant, KPC-Producing, Multidrug-Resistant, and Extensively Drug-Resistant Enterobacteriaceae.

机构信息

JMI Laboratories, North Liberty, Iowa, USA

JMI Laboratories, North Liberty, Iowa, USA.

出版信息

Antimicrob Agents Chemother. 2017 Aug 24;61(9). doi: 10.1128/AAC.00567-17. Print 2017 Sep.

Abstract

We evaluated the activity of meropenem-vaborbactam against contemporary nonfastidious Gram-negative clinical isolates, including isolates with resistance phenotypes and carbapenemase genotypes. Meropenem-vaborbactam (inhibitor at 8 μg/ml) and comparators were susceptibility tested by reference broth microdilution methods against 14,304 Gram-negative clinical isolates collected worldwide during 2014. Carbapenemase-encoding genes were screened by PCR and sequencing. Meropenem-vaborbactam (MIC, ≤0.015/0.06 μg/ml) inhibited 99.1 and 99.3% of the 10,426 isolates tested at ≤1 and ≤2 μg/ml, respectively. Meropenem inhibited 97.3 and 97.7% of these isolates at the same concentrations. Against isolates displaying carbapenem-resistant (CRE) ( = 265), multidrug-resistant (MDR) ( = 1,210), and extensively drug-resistant (XDR) ( = 161) phenotypes, meropenem-vaborbactam displayed MIC values of 0.5/32, 0.03/1, and 0.5/32 μg/ml, respectively, whereas meropenem activities were 16/>32, 0.06/32, and 0.5/32 μg/ml, respectively. Among all geographic regions, the highest meropenem-vaborbactam activities were observed for CRE and MDR isolates from the United States (MIC, 0.03/1 and 0.03/0.12 μg/ml, respectively). Meropenem-vaborbactam was very active against 135 KPC producers, and all isolates were inhibited by concentrations of ≤8 μg/ml (133 isolates by concentrations of ≤2 μg/ml). This combination had limited activity against isolates producing metallo-β-lactamases (including 25 NDM-1 and 16 VIM producers) and/or oxacillinases (27 OXA-48/OXA-163 producers) that were detected mainly in Asia-Pacific and some European countries. The activity of meropenem-vaborbactam was similar to that of meropenem alone against , spp., and Meropenem-vaborbactam was active against contemporary isolates collected worldwide, and this combination demonstrated enhanced activity compared to those of meropenem and most comparator agents against CRE isolates and KPC producers, the latter of which are often MDR.

摘要

我们评估了美罗培南-法硼巴坦对当代非苛养革兰阴性临床分离株的活性,包括具有耐药表型和碳青霉烯酶基因型的分离株。采用参考肉汤微量稀释法,对 2014 年期间全球采集的 14304 株革兰阴性临床分离株进行美罗培南-法硼巴坦(抑制剂浓度为 8μg/ml)和对照药物的药敏试验。通过 PCR 和测序筛选碳青霉烯酶编码基因。美罗培南-法硼巴坦(MIC≤0.015/0.06μg/ml)对≤1μg/ml 和≤2μg/ml 时测试的 10426 株分离株中的 99.1%和 99.3%具有抑制作用。美罗培南在相同浓度下对这些分离株的抑制率分别为 97.3%和 97.7%。对 265 株显示碳青霉烯类耐药(CRE)、1210 株多重耐药(MDR)和 161 株广泛耐药(XDR)表型的分离株,美罗培南-法硼巴坦的 MIC 值分别为 0.5/32、0.03/1 和 0.5/32μg/ml,而美罗培南的活性分别为 16/>32、0.06/32 和 0.5/32μg/ml。在所有地理区域,美罗培南-法硼巴坦对来自美国的 CRE 和 MDR 分离株的活性最高(MIC 分别为 0.03/1 和 0.03/0.12μg/ml)。美罗培南-法硼巴坦对 135 株 KPC 产生菌非常活跃,所有分离株的浓度均被抑制至≤8μg/ml(133 株分离株的浓度被抑制至≤2μg/ml)。该组合对主要在亚太地区和一些欧洲国家检测到的产金属β-内酰胺酶(包括 25 株 NDM-1 和 16 株 VIM 产生菌)和/或产 oxacillinase(27 株 OXA-48/OXA-163 产生菌)的分离株活性有限。美罗培南-法硼巴坦对 、 属和 spp.的活性与美罗培南单独使用时相似。美罗培南-法硼巴坦对全球采集的当代 分离株有效,与美罗培南和大多数对照药物相比,该组合对 CRE 分离株和 KPC 产生菌的活性增强,后者通常为 MDR。

相似文献

4
Meropenem-Vaborbactam Activity against U.S. Multidrug-Resistant Strains, Including Carbapenem-Resistant Isolates.
Microbiol Spectr. 2023 Feb 14;11(1):e0450722. doi: 10.1128/spectrum.04507-22. Epub 2023 Jan 9.
5
Effect of the β-Lactamase Inhibitor Vaborbactam Combined with Meropenem against Serine Carbapenemase-Producing Enterobacteriaceae.
Antimicrob Agents Chemother. 2016 Aug 22;60(9):5454-8. doi: 10.1128/AAC.00711-16. Print 2016 Sep.
7
Effects of KPC Variant and Porin Genotype on the Activity of Meropenem-Vaborbactam against Carbapenem-Resistant .
Antimicrob Agents Chemother. 2019 Feb 26;63(3). doi: 10.1128/AAC.02048-18. Print 2019 Mar.
8
In vitro evaluation of meropenem-vaborbactam against clinical CRE isolates at a tertiary care center with low KPC-mediated carbapenem resistance.
Diagn Microbiol Infect Dis. 2019 Mar;93(3):258-260. doi: 10.1016/j.diagmicrobio.2018.09.017. Epub 2018 Oct 4.
9
WCK 5222 (Cefepime-Zidebactam) Antimicrobial Activity against Clinical Isolates of Gram-Negative Bacteria Collected Worldwide in 2015.
Antimicrob Agents Chemother. 2017 Apr 24;61(5). doi: 10.1128/AAC.00072-17. Print 2017 May.

引用本文的文献

2
Meropenem/Vaborbactam in Pediatrics: 2 Cases of CRE Intraabdominal Infection.
J Pediatr Pharmacol Ther. 2025 Apr;30(2):263-267. doi: 10.5863/1551-6776-30.2.263. Epub 2025 Apr 14.
3
Global trends of ceftazidime-avibactam resistance in gram-negative bacteria: systematic review and meta-analysis.
Antimicrob Resist Infect Control. 2025 Feb 11;14(1):10. doi: 10.1186/s13756-025-01518-5.
4
Systematic review and meta-analysis on the carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates.
BMC Pharmacol Toxicol. 2025 Jan 30;26(1):25. doi: 10.1186/s40360-025-00857-8.
5
Multidrug resistant : A study on its pathogenesis and therapeutics.
Curr Res Microb Sci. 2024 Dec 6;8:100331. doi: 10.1016/j.crmicr.2024.100331. eCollection 2025.
7
A molecular analysis of meropenem-vaborbactam non-susceptible KPC-producing .
Antimicrob Agents Chemother. 2024 Oct 8;68(10):e0020824. doi: 10.1128/aac.00208-24. Epub 2024 Aug 20.
9
Meropenem/Vaborbactam: β-Lactam/β-Lactamase Inhibitor Combination, the Future in Eradicating Multidrug Resistance.
Antibiotics (Basel). 2023 Nov 10;12(11):1612. doi: 10.3390/antibiotics12111612.
10
carbapenemase variants: the new threat to global public health.
Clin Microbiol Rev. 2023 Dec 20;36(4):e0000823. doi: 10.1128/cmr.00008-23. Epub 2023 Nov 8.

本文引用的文献

1
Carbapenemase-Producing Klebsiella pneumoniae, a Key Pathogen Set for Global Nosocomial Dominance.
Antimicrob Agents Chemother. 2015 Oct;59(10):5873-84. doi: 10.1128/AAC.01019-15. Epub 2015 Jul 13.
2
Activity of Meropenem Combined with RPX7009, a Novel β-Lactamase Inhibitor, against Gram-Negative Clinical Isolates in New York City.
Antimicrob Agents Chemother. 2015 Aug;59(8):4856-60. doi: 10.1128/AAC.00843-15. Epub 2015 Jun 1.
3
Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: Mechanisms and epidemiology.
Int J Antimicrob Agents. 2015 Jun;45(6):568-85. doi: 10.1016/j.ijantimicag.2015.03.001. Epub 2015 Mar 24.
4
Discovery of a Cyclic Boronic Acid β-Lactamase Inhibitor (RPX7009) with Utility vs Class A Serine Carbapenemases.
J Med Chem. 2015 May 14;58(9):3682-92. doi: 10.1021/acs.jmedchem.5b00127. Epub 2015 Mar 17.
5
New β-lactamase inhibitors: a therapeutic renaissance in an MDR world.
Antimicrob Agents Chemother. 2014;58(4):1835-46. doi: 10.1128/AAC.00826-13. Epub 2013 Dec 30.
9
Combination therapy for treatment of infections with gram-negative bacteria.
Clin Microbiol Rev. 2012 Jul;25(3):450-70. doi: 10.1128/CMR.05041-11.
10
Transmission of carbapenem-resistant pathogens in New York City hospitals: progress and frustration.
J Antimicrob Chemother. 2012 Jun;67(6):1427-31. doi: 10.1093/jac/dks063. Epub 2012 Feb 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验