Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093;
Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7260-7265. doi: 10.1073/pnas.1707645114. Epub 2017 Jun 26.
CRISPR-Cas9 has become a facile genome editing technology, yet the structural and mechanistic features underlying its function are unclear. Here, we perform extensive molecular simulations in an enhanced sampling regime, using a Gaussian-accelerated molecular dynamics (GaMD) methodology, which probes displacements over hundreds of microseconds to milliseconds, to reveal the conformational dynamics of the endonuclease Cas9 during its activation toward catalysis. We disclose the conformational transition of Cas9 from its apo form to the RNA-bound form, suggesting a mechanism for RNA recruitment in which the domain relocations cause the formation of a positively charged cavity for nucleic acid binding. GaMD also reveals the conformation of a catalytically competent Cas9, which is prone for catalysis and whose experimental characterization is still limited. We show that, upon DNA binding, the conformational dynamics of the HNH domain triggers the formation of the active state, explaining how the HNH domain exerts a conformational control domain over DNA cleavage [Sternberg SH et al. (2015) , , 110-113]. These results provide atomic-level information on the molecular mechanism of CRISPR-Cas9 that will inspire future experimental investigations aimed at fully clarifying the biophysics of this unique genome editing machinery and at developing new tools for nucleic acid manipulation based on CRISPR-Cas9.
CRISPR-Cas9 已经成为一种简便的基因组编辑技术,但它的功能的结构和机制特征尚不清楚。在这里,我们使用高斯加速分子动力学 (GaMD) 方法在增强采样条件下进行广泛的分子模拟,该方法探测数百微秒至毫秒的位移,以揭示内切酶 Cas9 在激活过程中的构象动力学。我们揭示了 Cas9 从无活性形式到 RNA 结合形式的构象转变,这表明了 RNA 募集的一种机制,其中结构域的重定位导致形成带正电荷的空腔以结合核酸。GaMD 还揭示了具有催化能力的 Cas9 的构象,这种 Cas9 易于催化,但其实验表征仍然有限。我们表明,在 DNA 结合后,HNH 结构域的构象动力学引发了活性状态的形成,解释了 HNH 结构域如何对 DNA 切割施加构象控制。这些结果提供了关于 CRISPR-Cas9 分子机制的原子水平信息,这将激发未来的实验研究,旨在充分阐明这种独特的基因组编辑机制的生物物理学,并开发基于 CRISPR-Cas9 的新的核酸操作工具。