文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Cas9 HNH 核酸酶结构域催化状态的结构与功能研究进展

Structural and functional insights into the catalytic state of Cas9 HNH nuclease domain.

机构信息

Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, United States.

College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, China.

出版信息

Elife. 2019 Jul 30;8:e46500. doi: 10.7554/eLife.46500.


DOI:10.7554/eLife.46500
PMID:31361218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6706240/
Abstract

The CRISPR-associated endonuclease Cas9 from (SpyCas9), along with a programmable single-guide RNA (sgRNA), has been exploited as a significant genome-editing tool. Despite the recent advances in determining the SpyCas9 structures and DNA cleavage mechanism, the cleavage-competent conformation of the catalytic HNH nuclease domain of SpyCas9 remains largely elusive and debatable. By integrating computational and experimental approaches, we unveiled and validated the activated Cas9-sgRNA-DNA ternary complex in which the HNH domain is neatly poised for cleaving the target DNA strand. In this catalysis model, the HNH employs the catalytic triad of D839-H840-N863 for cleavage catalysis, rather than previously implicated D839-H840-D861, D837-D839-H840, or D839-H840-D861-N863. Our study contributes critical information to defining the catalytic conformation of the HNH domain and advances the knowledge about the conformational activation underlying Cas9-mediated DNA cleavage.

摘要

来自 (SpyCas9)的 CRISPR 相关内切酶 Cas9 与可编程的单指导 RNA(sgRNA)一起,已被开发为一种重要的基因组编辑工具。尽管最近在确定 SpyCas9 结构和 DNA 切割机制方面取得了进展,但 SpyCas9 的催化 HNH 核酸酶结构域的切割活性构象在很大程度上仍然难以捉摸和有争议。通过整合计算和实验方法,我们揭示并验证了激活的 Cas9-sgRNA-DNA 三元复合物,其中 HNH 结构域整齐地准备好切割靶 DNA 链。在这个催化模型中,HNH 采用催化三联体 D839-H840-N863 进行催化,而不是先前涉及的 D839-H840-D861、D837-D839-H840 或 D839-H840-D861-N863。我们的研究为定义 HNH 结构域的催化构象提供了关键信息,并推进了 Cas9 介导的 DNA 切割的构象激活的知识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/cb0a1c6bdce0/elife-46500-fig2-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/94347854cff1/elife-46500-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/164ebc9c275b/elife-46500-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/9ed5584b5689/elife-46500-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/735ebe25fac9/elife-46500-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/afd03d3445d4/elife-46500-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/a2a745a58425/elife-46500-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/89041b15e8ef/elife-46500-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/855df5b25ea2/elife-46500-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/0c3b057cc966/elife-46500-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/e03c6d6778a6/elife-46500-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/ebde0289a418/elife-46500-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/372b6fa6b968/elife-46500-fig2-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/aae6b7584528/elife-46500-fig2-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/cb0a1c6bdce0/elife-46500-fig2-figsupp7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/94347854cff1/elife-46500-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/164ebc9c275b/elife-46500-fig1-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/9ed5584b5689/elife-46500-fig1-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/735ebe25fac9/elife-46500-fig1-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/afd03d3445d4/elife-46500-fig1-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/a2a745a58425/elife-46500-fig1-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/89041b15e8ef/elife-46500-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/855df5b25ea2/elife-46500-fig2-figsupp1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/0c3b057cc966/elife-46500-fig2-figsupp2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/e03c6d6778a6/elife-46500-fig2-figsupp3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/ebde0289a418/elife-46500-fig2-figsupp4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/372b6fa6b968/elife-46500-fig2-figsupp5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/aae6b7584528/elife-46500-fig2-figsupp6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0443/6706240/cb0a1c6bdce0/elife-46500-fig2-figsupp7.jpg

相似文献

[1]
Structural and functional insights into the catalytic state of Cas9 HNH nuclease domain.

Elife. 2019-7-30

[2]
Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence.

Biochemistry. 2021-12-14

[3]
Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9.

Nat Struct Mol Biol. 2019-7-8

[4]
The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex.

Nucleic Acids Res. 2018-1-9

[5]
Structural and dynamic insights into the HNH nuclease of divergent Cas9 species.

J Struct Biol. 2022-3

[6]
Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States.

Mol Cell. 2019-10-24

[7]
Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.

J Chem Inf Model. 2023-11-13

[8]
Exploring alternative catalytic mechanisms of the Cas9 HNH domain.

Proteins. 2019-9-6

[9]
R-loop formation and conformational activation mechanisms of Cas9.

Nature. 2022-9

[10]
Probing the Dynamics of Cas9 Endonuclease Bound to the sgRNA Complex Using Hydrogen-Deuterium Exchange Mass Spectrometry.

Int J Mol Sci. 2022-1-20

引用本文的文献

[1]
Learning to utilize internal protein 3D nanoenvironment descriptors in predicting CRISPR-Cas9 off-target activity.

NAR Genom Bioinform. 2025-5-21

[2]
SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway.

ISME J. 2024-1-8

[3]
Substrate-independent activation pathways of the CRISPR-Cas9 HNH nuclease.

Biophys J. 2023-12-19

[4]
The Electronic Structure of Genome Editors from the First Principles.

Electron Struct. 2023-3

[5]
Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR-Cas9.

Nat Catal. 2022-10

[6]
Twisting and swiveling domain motions in Cas9 to recognize target DNA duplexes, make double-strand breaks, and release cleaved duplexes.

Front Mol Biosci. 2023-1-9

[7]
Precise DNA cleavage using CRISPR-SpRYgests.

Nat Biotechnol. 2023-3

[8]
Lighting up Nobel Prize-winning studies with protein intrinsic disorder.

Cell Mol Life Sci. 2022-7-26

[9]
Dynamics and mechanisms of CRISPR-Cas9 through the lens of computational methods.

Curr Opin Struct Biol. 2022-8

[10]
Structural biology of CRISPR-Cas immunity and genome editing enzymes.

Nat Rev Microbiol. 2022-11

本文引用的文献

[1]
Exploring the Catalytic Mechanism of Cas9 Using Information Inferred from Endonuclease VII.

ACS Catal. 2019-2-1

[2]
Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance.

Biochemistry. 2019-3-27

[3]
Phage AcrIIA2 DNA Mimicry: Structural Basis of the CRISPR and Anti-CRISPR Arms Race.

Mol Cell. 2018-12-31

[4]
Temperature-Responsive Competitive Inhibition of CRISPR-Cas9.

Mol Cell. 2018-12-27

[5]
Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.

Q Rev Biophys. 2018-8-3

[6]
Assessing the Performance of the Nonbonded Mg Models in a Two-Metal-Dependent Ribonuclease.

J Chem Inf Model. 2018-12-19

[7]
Stress and interferon signalling-mediated apoptosis contributes to pleiotropic anticancer responses induced by targeting NGLY1.

Br J Cancer. 2018-11-2

[8]
CRISPR-Cas guides the future of genetic engineering.

Science. 2018-8-31

[9]
Analysis of Phosphoryl-Transfer Enzymes with QM/MM Free Energy Simulations.

Methods Enzymol. 2018

[10]
Identification of a unique Ca-binding site in rat acid-sensing ion channel 3.

Nat Commun. 2018-5-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索