Palermo Giulia, Miao Yinglong, Walker Ross C, Jinek Martin, McCammon J Andrew
Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093, United States.
San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive, MC0505, La Jolla, California 92093-0505, United States; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.
ACS Cent Sci. 2016 Oct 26;2(10):756-763. doi: 10.1021/acscentsci.6b00218. Epub 2016 Sep 9.
The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.
CRISPR(成簇规律间隔短回文重复序列)-Cas9系统最近成为一种变革性的基因组编辑技术,正在革新基础生物科学以及应用医学和生物技术。核酸内切酶Cas9与引导RNA结合,以匹配并切割双链DNA中的互补序列,形成RNA:DNA杂交体和一条被置换的非靶向DNA链。尽管正在进行广泛的结构研究,但Cas9的构象动力学及其在结合和DNA切割过程中与核酸的相互作用在很大程度上仍不清楚。在这里,通过采用多微秒时间尺度的分子动力学,我们揭示了Cas9的构象可塑性,并确定了在核酸结合和加工过程中允许其发生大规模构象变化的关键决定因素。我们展示了伴随核酸结合的蛋白质“闭合”如何从根本上依赖于蛋白质结构域的高度耦合和特定运动,共同引发核酸结合所需的显著构象变化。我们进一步揭示了非靶向DNA在核酸酶HNH结构域激活过程中的关键作用,展示了非靶向DNA的定位如何触发局部构象变化,从而有利于形成具有催化活性的Cas9。最后,一种显著的构象可塑性被确定为HNH结构域的固有特性,构成了允许HNH重新定位的必要元素。这些新发现为未来旨在全面表征CRISPR-Cas9系统动态特征的实验研究提供了参考——更重要的是——呼吁进行新的结构工程努力,这对于合理设计新的基因组工程应用至关重要。
Proc Natl Acad Sci U S A. 2021-1-12
Proc Natl Acad Sci U S A. 2017-6-26
Science. 2016-2-19
J Chem Inf Model. 2020-12-28
J Am Chem Soc. 2017-8-7
NAR Genom Bioinform. 2025-5-21
Nucleic Acids Res. 2025-1-7
Q Rev Biophys. 2024-12-10
J Chem Theory Comput. 2024-8-13
J Chem Theory Comput. 2010-12-14
Methods Enzymol. 2016
Cell Biochem Biophys. 2017-6
Chem Rev. 2016-6-8
Science. 2016-2-19
Sci Rep. 2016-1-29