文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

分子模拟揭示CRISPR-Cas9的显著可塑性及非靶向DNA的关键作用

Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations.

作者信息

Palermo Giulia, Miao Yinglong, Walker Ross C, Jinek Martin, McCammon J Andrew

机构信息

Department of Pharmacology, University of California San Diego, La Jolla, California 92093, United States; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093, United States.

San Diego Supercomputer Center, University of California San Diego, 9500 Gilman Drive, MC0505, La Jolla, California 92093-0505, United States; Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States.

出版信息

ACS Cent Sci. 2016 Oct 26;2(10):756-763. doi: 10.1021/acscentsci.6b00218. Epub 2016 Sep 9.


DOI:10.1021/acscentsci.6b00218
PMID:27800559
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5084073/
Abstract

The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.

摘要

CRISPR(成簇规律间隔短回文重复序列)-Cas9系统最近成为一种变革性的基因组编辑技术,正在革新基础生物科学以及应用医学和生物技术。核酸内切酶Cas9与引导RNA结合,以匹配并切割双链DNA中的互补序列,形成RNA:DNA杂交体和一条被置换的非靶向DNA链。尽管正在进行广泛的结构研究,但Cas9的构象动力学及其在结合和DNA切割过程中与核酸的相互作用在很大程度上仍不清楚。在这里,通过采用多微秒时间尺度的分子动力学,我们揭示了Cas9的构象可塑性,并确定了在核酸结合和加工过程中允许其发生大规模构象变化的关键决定因素。我们展示了伴随核酸结合的蛋白质“闭合”如何从根本上依赖于蛋白质结构域的高度耦合和特定运动,共同引发核酸结合所需的显著构象变化。我们进一步揭示了非靶向DNA在核酸酶HNH结构域激活过程中的关键作用,展示了非靶向DNA的定位如何触发局部构象变化,从而有利于形成具有催化活性的Cas9。最后,一种显著的构象可塑性被确定为HNH结构域的固有特性,构成了允许HNH重新定位的必要元素。这些新发现为未来旨在全面表征CRISPR-Cas9系统动态特征的实验研究提供了参考——更重要的是——呼吁进行新的结构工程努力,这对于合理设计新的基因组工程应用至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/0d627da0cc99/oc-2016-00218n_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/c663cd313b0b/oc-2016-00218n_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/f470d6740fa2/oc-2016-00218n_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/22097da212d4/oc-2016-00218n_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/821b5205c633/oc-2016-00218n_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/30d0d2a69cf5/oc-2016-00218n_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/0d627da0cc99/oc-2016-00218n_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/c663cd313b0b/oc-2016-00218n_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/f470d6740fa2/oc-2016-00218n_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/22097da212d4/oc-2016-00218n_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/821b5205c633/oc-2016-00218n_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/30d0d2a69cf5/oc-2016-00218n_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34f8/5084073/0d627da0cc99/oc-2016-00218n_0007.jpg

相似文献

[1]
Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations.

ACS Cent Sci. 2016-10-26

[2]
Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain.

Q Rev Biophys. 2018-8-3

[3]
Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.

Proteins. 2017-2

[4]
Real-time observation of Cas9 postcatalytic domain motions.

Proc Natl Acad Sci U S A. 2021-1-12

[5]
CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations.

Proc Natl Acad Sci U S A. 2017-6-26

[6]
Protein-Mutation-Induced Conformational Changes of the DNA and Nuclease Domain in CRISPR/Cas9 Systems by Molecular Dynamics Simulations.

J Phys Chem B. 2020-3-19

[7]
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

Science. 2016-2-19

[8]
Leveraging QM/MM and Molecular Dynamics Simulations to Decipher the Reaction Mechanism of the Cas9 HNH Domain to Investigate Off-Target Effects.

J Chem Inf Model. 2023-11-13

[9]
Molecular Dynamics Reveals a DNA-Induced Dynamic Switch Triggering Activation of CRISPR-Cas12a.

J Chem Inf Model. 2020-12-28

[10]
Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.

J Am Chem Soc. 2017-8-7

引用本文的文献

[1]
Learning to utilize internal protein 3D nanoenvironment descriptors in predicting CRISPR-Cas9 off-target activity.

NAR Genom Bioinform. 2025-5-21

[2]
Structural and dynamic impacts of single-atom disruptions to guide RNA interactions within the recognition lobe of Cas9.

Elife. 2025-5-19

[3]
Characterization and modulation of human insulin degrading enzyme conformational dynamics to control enzyme activity.

bioRxiv. 2025-1-4

[4]
Exploring CRISPR-Cas9 HNH-Domain-Catalyzed DNA Cleavage Using Accelerated Quantum Mechanical Molecular Mechanical Free Energy Simulation.

Biochemistry. 2025-1-7

[5]
Structural basis of Cas9 DNA interrogation with a 5' truncated sgRNA.

Nucleic Acids Res. 2025-1-7

[6]
Graph theory approaches for molecular dynamics simulations.

Q Rev Biophys. 2024-12-10

[7]
Exploring the Thermostability of CRISPR-Cas12b using Molecular Dynamics Simulations.

ArXiv. 2024-8-20

[8]
Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes.

J Chem Theory Comput. 2024-8-13

[9]
Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies.

Int J Nanomedicine. 2024

[10]
Structural and Dynamic Impacts of Single-atom Disruptions to Guide RNA Interactions within the Recognition Lobe of Cas9.

bioRxiv. 2025-3-24

本文引用的文献

[1]
Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins.

J Chem Theory Comput. 2010-12-14

[2]
Detecting Allosteric Networks Using Molecular Dynamics Simulation.

Methods Enzymol. 2016

[3]
Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling.

Cell Biochem Biophys. 2017-6

[4]
Who Activates the Nucleophile in Ribozyme Catalysis? An Answer from the Splicing Mechanism of Group II Introns.

J Am Chem Soc. 2016-6-23

[5]
Emerging Computational Methods for the Rational Discovery of Allosteric Drugs.

Chem Rev. 2016-6-8

[6]
Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

Mol Cell. 2016-3-17

[7]
Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9.

Mol Cell. 2016-3-17

[8]
Protein Allostery and Conformational Dynamics.

Chem Rev. 2016-6-8

[9]
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.

Science. 2016-2-19

[10]
Allosteric Pathways in the PPARγ-RXRα nuclear receptor complex.

Sci Rep. 2016-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索