Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
Faculty of Odontology, Universidad Complutense of Madrid, Madrid, Spain.
Clin Oral Implants Res. 2017 Dec;28(12):1592-1599. doi: 10.1111/clr.13030. Epub 2017 Jun 26.
To test whether guided bone regeneration (GBR) of peri-implant defects at zirconia (ZrO ) implants differs from GBR at titanium (Ti) implants regarding the bone integration of the implant and of the grafting material.
Maxillary premolars and molars were extracted in seven dogs. After 5 months, four semi-saddle bone defects were created in each maxilla. Implant placement and simultaneous GBR were performed using the following randomly assigned modalities: (1) ZrO implant + deproteinized bovine bone mineral (DBBM) granules + a collagen membrane (CM), (2) ZrO implant + DBBM with 10% collagen matrix + CM, (3) ZrO implant + DBBM block + CM, and (4) Ti implant + DBBM granules + CM. After 3 months, one central histological section of each site was prepared. Histomorphometrical assessments were performed evaluating the augmented area (AA) within the former bone defect (primary outcome), the area of new bone (NB), bone substitute (BS), and non-mineralized tissue (NMT) within AA in mm . In addition, the distance between the most coronal bone-to-implant contact and the margin of the former bone defect (fBIC-DEF), and the bone-to-implant contact fraction (BIC) were measured in mm.
AA measured 8.6 ± 4.0 mm for ZrO implant + DBBM granules, 4.7 ± 1.6 mm for ZrO implant + DBBM-collagen, 5.1 ± 1.9 mm for ZrO implant + DBBM block, and 7.6 ± 2.8 mm for Ti implant + DBBM granules. There were no statistically significant differences between the treatment modalities (P > 0.05). NB reached 2.0 ± 1.7 mm for ZrO implant + DBBM granules, 0.9 ± 0.9 mm for ZrO implant + DBBM-collagen, 2.1 ± 0.9 mm for ZrO implant + DBBM block, and 0.8 ± 0.6 mm for Ti implant + DBBM granules. fBIC-DEF amounted to 2.1 ± 1.7 mm for ZrO implant + DBBM granules, to 2.7 ± 1.1 mm for ZrO implant + DBBM-collagen, to 2.9 ± 1.2 mm for ZrO implant + DBBM block, and to 3.4 ± 0.4 mm for Ti implant + DBBM granules. BIC measured 70 ± 19% for ZrO implant + DBBM granules, 69 ± 22% for ZrO implant + DBBM-collagen, 77 ± 30% for ZrO implant + DBBM block, and 66 ± 27% for Ti implant + DBBM granules.
The findings of the present pilot study suggest that zirconia and titanium implants grafted with DBBM granules and covered with a collagen membrane do not perform differently regarding the augmented ridge contour, the NB formation, and the implant osseointegration.
测试在氧化锆(ZrO )种植体和钛(Ti)种植体的周围骨缺损中进行引导骨再生(GBR)时,种植体和移植物材料的骨整合方面是否存在差异。
在 7 只狗中拔除上颌前磨牙和磨牙。在 5 个月后,每个上颌骨中创建了四个半鞍骨缺损。使用以下随机分配的方式进行种植体放置和同时 GBR:(1)ZrO 种植体+去蛋白牛骨矿物质(DBBM)颗粒+胶原膜(CM),(2)ZrO 种植体+含 10%胶原基质的 DBBM+CM,(3)ZrO 种植体+DBBM 块+CM,和(4)Ti 种植体+DBBM 颗粒+CM。3 个月后,每个部位的一个中央组织学切片进行了准备。进行组织形态计量评估,以评估在前骨缺损内的增强区域(AA)(主要结果),新骨(NB),骨替代物(BS)和 AA 内的非矿化组织(NMT)的面积在 mm 内。此外,还测量了最冠骨-种植体接触到前骨缺损边缘的距离(fBIC-DEF)和骨-种植体接触分数(BIC),均以 mm 为单位。
ZrO 种植体+DBBM 颗粒的 AA 为 8.6±4.0mm,ZrO 种植体+DBBM-胶原的 AA 为 4.7±1.6mm,ZrO 种植体+DBBM 块的 AA 为 5.1±1.9mm,Ti 种植体+DBBM 颗粒的 AA 为 7.6±2.8mm。治疗方式之间无统计学差异(P>0.05)。ZrO 种植体+DBBM 颗粒的 NB 为 2.0±1.7mm,ZrO 种植体+DBBM-胶原的 NB 为 0.9±0.9mm,ZrO 种植体+DBBM 块的 NB 为 2.1±0.9mm,Ti 种植体+DBBM 颗粒的 NB 为 0.8±0.6mm。fBIC-DEF 为 ZrO 种植体+DBBM 颗粒的 2.1±1.7mm,ZrO 种植体+DBBM-胶原的 2.7±1.1mm,ZrO 种植体+DBBM 块的 2.9±1.2mm,Ti 种植体+DBBM 颗粒的 3.4±0.4mm。BIC 为 ZrO 种植体+DBBM 颗粒的 70±19%,ZrO 种植体+DBBM-胶原的 69±22%,ZrO 种植体+DBBM 块的 77±30%,Ti 种植体+DBBM 颗粒的 66±27%。
本初步研究的结果表明,在氧化锆和钛种植体上用 DBBM 颗粒移植并用胶原膜覆盖,在增强脊轮廓,新骨形成和种植体骨整合方面没有差异。