Suppr超能文献

使用棱镜探针和小型荧光显微镜对自由活动小鼠进行多层皮质钙成像。

Multi-layer Cortical Ca2+ Imaging in Freely Moving Mice with Prism Probes and Miniaturized Fluorescence Microscopy.

作者信息

Gulati Srishti, Cao Vania Y, Otte Stephani

机构信息

Inscopix Inc.

Inscopix Inc.;

出版信息

J Vis Exp. 2017 Jun 13(124):55579. doi: 10.3791/55579.

Abstract

In vivo circuit and cellular level functional imaging is a critical tool for understanding the brain in action. High resolution imaging of mouse cortical neurons with two-photon microscopy has provided unique insights into cortical structure, function and plasticity. However, these studies are limited to head fixed animals, greatly reducing the behavioral complexity available for study. In this paper, we describe a procedure for performing chronic fluorescence microscopy with cellular-resolution across multiple cortical layers in freely behaving mice. We used an integrated miniaturized fluorescence microscope paired with an implanted prism probe to simultaneously visualize and record the calcium dynamics of hundreds of neurons across multiple layers of the somatosensory cortex as the mouse engaged in a novel object exploration task, over several days. This technique can be adapted to other brain regions in different animal species for other behavioral paradigms.

摘要

体内回路和细胞水平的功能成像对于理解大脑活动至关重要。利用双光子显微镜对小鼠皮层神经元进行高分辨率成像,为深入了解皮层结构、功能和可塑性提供了独特视角。然而,这些研究仅限于头部固定的动物,极大地降低了可供研究的行为复杂性。在本文中,我们描述了一种在自由活动的小鼠中跨多个皮层层进行细胞分辨率慢性荧光显微镜检查的方法。我们使用了一台集成的小型化荧光显微镜,搭配植入的棱镜探头,在小鼠进行新物体探索任务的数天时间里,同时可视化并记录体感皮层多个层中数百个神经元的钙动力学。该技术可适用于不同动物物种的其他脑区及其他行为范式。

相似文献

2
Chronic cellular imaging of entire cortical columns in awake mice using microprisms.
Neuron. 2013 Nov 20;80(4):900-13. doi: 10.1016/j.neuron.2013.07.052. Epub 2013 Oct 17.
3
A Compact Head-Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice.
Curr Protoc Neurosci. 2018 Jul;84(1):e51. doi: 10.1002/cpns.51. Epub 2018 Jun 26.
5
Large-scale recording of neuronal activity in freely-moving mice at cellular resolution.
Nat Commun. 2023 Oct 12;14(1):6399. doi: 10.1038/s41467-023-42083-y.
6
Chronic multiscale imaging of neuronal activity in the awake common marmoset.
Sci Rep. 2016 Oct 27;6:35722. doi: 10.1038/srep35722.
7
A Two-Step GRIN Lens Coating for In Vivo Brain Imaging.
Neurosci Bull. 2019 Jun;35(3):419-424. doi: 10.1007/s12264-019-00356-x. Epub 2019 Mar 9.
8
Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes.
J Neurosci Methods. 2017 Nov 1;291:238-248. doi: 10.1016/j.jneumeth.2017.08.016. Epub 2017 Aug 19.
9
Miniaturized microscope with flexible light source input for neuronal imaging and manipulation in freely behaving animals.
Biochem Biophys Res Commun. 2019 Sep 24;517(3):520-524. doi: 10.1016/j.bbrc.2019.07.082. Epub 2019 Jul 31.
10
A wireless miniScope for deep brain imaging in freely moving mice.
J Neurosci Methods. 2019 Jul 15;323:56-60. doi: 10.1016/j.jneumeth.2019.05.008. Epub 2019 May 19.

引用本文的文献

2
Locomotion-dependent auditory gating to the parietal cortex guides multisensory decisions.
Nat Commun. 2025 Mar 7;16(1):2308. doi: 10.1038/s41467-025-57347-y.
4
Advances in cellular resolution microscopy for brain imaging in rats.
Neurophotonics. 2023 Oct;10(4):044304. doi: 10.1117/1.NPh.10.4.044304. Epub 2023 Nov 30.
5
Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis.
Clocks Sleep. 2022 Jul 7;4(3):332-345. doi: 10.3390/clockssleep4030028.
6
Are the Anterior and Mid-Cingulate Cortices Distinct in Rodents?
Front Neuroanat. 2022 Jun 2;16:914359. doi: 10.3389/fnana.2022.914359. eCollection 2022.
7
Location Matters: Navigating Regional Heterogeneity of the Neurovascular Unit.
Front Cell Neurosci. 2021 Jun 30;15:696540. doi: 10.3389/fncel.2021.696540. eCollection 2021.
8
Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque.
Cell Rep. 2021 Jun 15;35(11):109239. doi: 10.1016/j.celrep.2021.109239.
9
A Role for Astroglial Calcium in Mammalian Sleep and Sleep Regulation.
Curr Biol. 2020 Nov 16;30(22):4373-4383.e7. doi: 10.1016/j.cub.2020.08.052. Epub 2020 Sep 24.
10
Deciphering Brain Function by Miniaturized Fluorescence Microscopy in Freely Behaving Animals.
Front Neurosci. 2020 Aug 11;14:819. doi: 10.3389/fnins.2020.00819. eCollection 2020.

本文引用的文献

1
Sensory and decision-related activity propagate in a cortical feedback loop during touch perception.
Nat Neurosci. 2016 Sep;19(9):1243-9. doi: 10.1038/nn.4356. Epub 2016 Jul 20.
2
Neural substrates underlying effort, time, and risk-based decision making in motivated behavior.
Neurobiol Learn Mem. 2016 Sep;133:233-256. doi: 10.1016/j.nlm.2016.07.015. Epub 2016 Jul 15.
3
Inferring cortical function in the mouse visual system through large-scale systems neuroscience.
Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7337-44. doi: 10.1073/pnas.1512901113.
5
Calcium imaging of sleep-wake related neuronal activity in the dorsal pons.
Nat Commun. 2016 Feb 25;7:10763. doi: 10.1038/ncomms10763.
6
Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior.
Science. 2016 Jan 1;351(6268):aac9698. doi: 10.1126/science.aac9698.
7
Impaired Processing in the Primary Auditory Cortex of an Animal Model of Autism.
Front Syst Neurosci. 2015 Nov 16;9:158. doi: 10.3389/fnsys.2015.00158. eCollection 2015.
8
Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory.
Neuron. 2015 Sep 23;87(6):1317-1331. doi: 10.1016/j.neuron.2015.08.036.
9
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
10
Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior.
Neuron. 2015 Jul 15;87(2):437-50. doi: 10.1016/j.neuron.2015.06.021. Epub 2015 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验