Suppr超能文献

使用头戴式显微镜和长期植入透镜对自然状态下哺乳动物行为期间的皮质、皮质下和深部脑神经网络动态进行可视化。

Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses.

作者信息

Resendez Shanna L, Jennings Josh H, Ung Randall L, Namboodiri Vijay Mohan K, Zhou Zhe Charles, Otis James M, Nomura Hiroshi, McHenry Jenna A, Kosyk Oksana, Stuber Garret D

机构信息

Departments of Psychiatry and Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.

Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, USA.

出版信息

Nat Protoc. 2016 Mar;11(3):566-97. doi: 10.1038/nprot.2016.021. Epub 2016 Feb 25.

Abstract

Genetically encoded calcium indicators for visualizing dynamic cellular activity have greatly expanded our understanding of the brain. However, owing to the light-scattering properties of the brain, as well as the size and rigidity of traditional imaging technology, in vivo calcium imaging has been limited to superficial brain structures during head-fixed behavioral tasks. These limitations can now be circumvented by using miniature, integrated microscopes in conjunction with an implantable microendoscopic lens to guide light into and out of the brain, thus permitting optical access to deep brain (or superficial) neural ensembles during naturalistic behaviors. Here we describe steps to conduct such imaging studies using mice. However, we anticipate that the protocol can be easily adapted for use in other small vertebrates. Successful completion of this protocol will permit cellular imaging of neuronal activity and the generation of data sets with sufficient statistical power to correlate neural activity with stimulus presentation, physiological state and other aspects of complex behavioral tasks. This protocol takes 6-11 weeks to complete.

摘要

用于可视化动态细胞活动的基因编码钙指示剂极大地扩展了我们对大脑的理解。然而,由于大脑的光散射特性以及传统成像技术的尺寸和刚性,在头部固定行为任务期间,体内钙成像仅限于浅表脑结构。现在,可以通过使用微型集成显微镜与可植入的微内镜透镜相结合,将光导入和导出大脑,从而在自然行为期间允许对深部脑(或浅表)神经群体进行光学观察,来规避这些限制。在这里,我们描述了使用小鼠进行此类成像研究的步骤。不过,我们预计该方案可轻松适用于其他小型脊椎动物。成功完成本方案将允许对神经元活动进行细胞成像,并生成具有足够统计效力的数据集,以将神经活动与刺激呈现、生理状态及复杂行为任务的其他方面相关联。本方案需要6至11周才能完成。

相似文献

2
Skin suturing and cortical surface viral infusion improves imaging of neuronal ensemble activity with head-mounted miniature microscopes.
J Neurosci Methods. 2017 Nov 1;291:238-248. doi: 10.1016/j.jneumeth.2017.08.016. Epub 2017 Aug 19.
3
Miniature microscopes for manipulating and recording in vivo brain activity.
Microscopy (Oxf). 2021 Oct 5;70(5):399-414. doi: 10.1093/jmicro/dfab028.
4
An aspherical microlens assembly for deep brain fluorescence microendoscopy.
Biochem Biophys Res Commun. 2020 Jun 25;527(2):447-452. doi: 10.1016/j.bbrc.2020.04.009. Epub 2020 Apr 23.
6
Head-mounted microendoscopic calcium imaging in dorsal premotor cortex of behaving rhesus macaque.
Cell Rep. 2021 Jun 15;35(11):109239. doi: 10.1016/j.celrep.2021.109239.
8
A Compact Head-Mounted Endoscope for In Vivo Calcium Imaging in Freely Behaving Mice.
Curr Protoc Neurosci. 2018 Jul;84(1):e51. doi: 10.1002/cpns.51. Epub 2018 Jun 26.
10
Imaging Cortical Dynamics in GCaMP Transgenic Rats with a Head-Mounted Widefield Macroscope.
Neuron. 2018 Dec 5;100(5):1045-1058.e5. doi: 10.1016/j.neuron.2018.09.050. Epub 2018 Oct 25.

引用本文的文献

3
Leveraging Fiber Photometry to Decipher Neural Circuits Underlying Anxiety in Mice.
Fundam Clin Pharmacol. 2025 Oct;39(5):e70043. doi: 10.1111/fcp.70043.
5
Prepronociceptin-Expressing Neurons in the Bed Nucleus of the Stria Terminalis Signal Escape Behavior.
Biol Psychiatry Glob Open Sci. 2025 May 22;5(5):100538. doi: 10.1016/j.bpsgos.2025.100538. eCollection 2025 Sep.
6
Integrating optical neuroscience tools into touchscreen operant systems.
Nat Protoc. 2025 May 23. doi: 10.1038/s41596-025-01143-x.
7
Automated head-fixation training system with high levels of animal participation in psychoacoustic tasks.
PLoS One. 2025 May 20;20(5):e0323114. doi: 10.1371/journal.pone.0323114. eCollection 2025.
8
Calcium Imaging in Vivo: How to Correctly Select and Apply Fiber Optic Photometric Indicators.
Organogenesis. 2025 Dec;21(1):2489667. doi: 10.1080/15476278.2025.2489667. Epub 2025 Apr 5.
10
Calcium Imaging in Hypothalamic Cells.
Methods Mol Biol. 2025;2882:305-316. doi: 10.1007/978-1-0716-4284-9_15.

本文引用的文献

1
Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory.
Neuron. 2015 Sep 23;87(6):1317-1331. doi: 10.1016/j.neuron.2015.08.036.
2
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9466-71. doi: 10.1073/pnas.1511668112. Epub 2015 Jul 13.
4
Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior.
Neuron. 2015 Jul 15;87(2):437-50. doi: 10.1016/j.neuron.2015.06.021. Epub 2015 Jul 2.
5
Mesoscopic patterns of neural activity support songbird cortical sequences.
PLoS Biol. 2015 Jun 3;13(6):e1002158. doi: 10.1371/journal.pbio.1002158. eCollection 2015 Jun.
6
Miniature microscopes for large-scale imaging of neuronal activity in freely behaving rodents.
Curr Opin Neurobiol. 2015 Jun;32:141-7. doi: 10.1016/j.conb.2015.04.001. Epub 2015 May 16.
7
Imaging activity in astrocytes and neurons with genetically encoded calcium indicators following in utero electroporation.
Front Mol Neurosci. 2015 Apr 15;8:10. doi: 10.3389/fnmol.2015.00010. eCollection 2015.
8
Neurons for hunger and thirst transmit a negative-valence teaching signal.
Nature. 2015 May 14;521(7551):180-185. doi: 10.1038/nature14416. Epub 2015 Apr 27.
9
Cellular level brain imaging in behaving mammals: an engineering approach.
Neuron. 2015 Apr 8;86(1):140-59. doi: 10.1016/j.neuron.2015.03.055.
10
Tools for probing local circuits: high-density silicon probes combined with optogenetics.
Neuron. 2015 Apr 8;86(1):92-105. doi: 10.1016/j.neuron.2015.01.028.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验