Suppr超能文献

来自噬菌体展示随机肽库的金黄色葡萄球菌特异性和选择性探针。

Specific and selective probes for Staphylococcus aureus from phage-displayed random peptide libraries.

作者信息

De Plano Laura M, Carnazza Santina, Messina Grazia M L, Rizzo Maria Giovanna, Marletta Giovanni, Guglielmino Salvatore P P

机构信息

Department of Chemical Sciences, Biological, Pharmaceutical and Environmental, University of Messina, Viale F. Stagnod'Alcontres 31, 98166 Messina, Italy.

LAMSUN (Laboratory for Molecular Surfaces and Nanotechnology), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania, Italy.

出版信息

Colloids Surf B Biointerfaces. 2017 Sep 1;157:473-480. doi: 10.1016/j.colsurfb.2017.05.081. Epub 2017 Jun 17.

Abstract

Staphylococcus aureus is a major human pathogen causing health care-associated and community-associated infections. Early diagnosis is essential to prevent disease progression and to reduce complications that can be serious. In this study, we selected, from a 9-mer phage peptide library, a phage clone displaying peptide capable of specific binding to S. aureus cell surface, namely St.au9IVS5 (sequence peptide RVRSAPSSS).The ability of the isolated phage clone to interact specifically with S. aureus and the efficacy of its bacteria-binding properties were established by using enzyme linked immune-sorbent assay (ELISA). We also demonstrated by Western blot analysis that the most reactive and selective phage peptide binds a 78KDa protein on the bacterial cell surface. Furthermore, we observed selectivity of phage-bacteria-binding allowing to identify clinical isolates of S. aureus in comparison with a panel of other bacterial species. In order to explore the possibility of realizing a selective bacteria biosensor device, based on immobilization of affinity-selected phage, we have studied the physisorbed phage deposition onto a mica surface. Atomic Force Microscopy (AFM) was used to determine the organization of phage on mica surface and then the binding performance of mica-physisorbed phage to bacterial target was evaluated during the time by fluorescent microscopy. The system is able to bind specifically about 50% of S. aureus cells after 15' and 90% after one hour. Due to specificity and rapidness, this biosensing strategy paves the way to the further development of new cheap biosensors to be used in developing countries, as lab-on-chip (LOC) to detect bacterial agents in clinical diagnostics applications.

摘要

金黄色葡萄球菌是引起医疗保健相关感染和社区相关感染的主要人类病原体。早期诊断对于预防疾病进展和减少可能严重的并发症至关重要。在本研究中,我们从一个9肽噬菌体肽库中筛选出一个展示能够特异性结合金黄色葡萄球菌细胞表面的肽的噬菌体克隆,即St.au9IVS5(序列肽为RVRSAPSSS)。通过酶联免疫吸附测定(ELISA)确定了分离出的噬菌体克隆与金黄色葡萄球菌特异性相互作用的能力及其细菌结合特性的功效。我们还通过蛋白质印迹分析证明,反应性和选择性最强的噬菌体肽与细菌细胞表面的一种78 kDa蛋白质结合。此外,我们观察到噬菌体与细菌结合的选择性,与一组其他细菌物种相比,能够鉴定出金黄色葡萄球菌的临床分离株。为了探索基于亲和选择噬菌体固定化实现选择性细菌生物传感器装置的可能性,我们研究了物理吸附的噬菌体在云母表面的沉积。使用原子力显微镜(AFM)确定噬菌体在云母表面的组织,然后通过荧光显微镜在一段时间内评估云母物理吸附的噬菌体与细菌靶标的结合性能。该系统能够在15分钟后特异性结合约50%的金黄色葡萄球菌细胞,1小时后结合90%。由于其特异性和快速性,这种生物传感策略为在发展中国家进一步开发用于临床诊断应用中检测细菌病原体的新型廉价生物传感器(如芯片实验室(LOC))铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验