Advanced Biomaterials & Tissue Engineering Centre, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, PR China.
Biosens Bioelectron. 2020 Jun 1;157:112163. doi: 10.1016/j.bios.2020.112163. Epub 2020 Mar 22.
The routinely used enzymes, antibodies, and nucleic acids-based biosensors for detection of Staphylococcus aureus are often overwhelmed by limited selectivity, sensitivity, high cost, and inability to discriminate between live/dead cells. This necessitates the development of an ultra-sensitive, stable, and selective electrochemical biosensor capable of discriminating live S. aureus in a mixture of live/dead cells in food samples. The current study reports the development of an electrochemical biosensor through the immobilization of bacteriophage in surface-modified bacterial cellulose (BC) matrix. BC being highly porous and fibrous, offers a high surface area for the impregnation of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and allows high-density phage immobilization. Surface modification of BC/c-MWCNTs with polyethyleneimine (PEI) provides a positive charge that facilitates oriented phage immobilization. FE-SEM and FT-IR analyses confirmed the development of BC/c-MWCNTs-PEI-phage bio-interface. Confocal microscopy analysis showed 11.7 ± 1.2 phage particles⋅μm immobilized in the BC matrix and showed anti-staphylococcal activity by producing clear lytic zone and reduced bacterial growth. Differential pulse voltammetry (DPV) analysis detected 3 CFU⋅mL and 5 CFU⋅mL of S. aureus in phosphate buffer saline (PBS) and milk, respectively, within 30 min at neutral pH and showed stability over 6-weeks at 4 °C. The biosensor showed high specificity for S. aureus, both in pure and mixed cultures of non-host bacteria, and effectively discriminated live S. aureus in a mixture of live/dead cells. The developed biosensor represents a simple, sensitive, specific, and accurate tool for early detection of S. aureus in food samples.
用于检测金黄色葡萄球菌的常用酶、抗体和基于核酸的生物传感器通常受到选择性、灵敏度、高成本和无法区分活/死细胞的限制。因此,需要开发一种超灵敏、稳定和选择性的电化学生物传感器,能够在食品样品中活/死细胞混合物中区分活的金黄色葡萄球菌。本研究通过将噬菌体固定在表面修饰的细菌纤维素 (BC) 基质中,开发了一种电化学生物传感器。BC 具有高度多孔和纤维状结构,为羧基化多壁碳纳米管 (c-MWCNTs) 的浸渍提供了高表面积,并允许高密度噬菌体固定。BC/c-MWCNTs 用聚乙烯亚胺 (PEI) 进行表面修饰可提供正电荷,有利于噬菌体的定向固定。FE-SEM 和 FT-IR 分析证实了 BC/c-MWCNTs-PEI-噬菌体生物界面的形成。共焦显微镜分析显示,在 BC 基质中固定了 11.7 ± 1.2 个噬菌体颗粒⋅μm,通过产生清晰的溶菌区和减少细菌生长表现出抗金黄色葡萄球菌活性。差分脉冲伏安法 (DPV) 分析在中性 pH 下分别在磷酸盐缓冲盐水 (PBS) 和牛奶中检测到 3 和 5 CFU⋅mL 的金黄色葡萄球菌,在 4°C 下 6 周内保持稳定。该生物传感器对金黄色葡萄球菌具有高度特异性,无论是在纯培养物还是非宿主细菌的混合培养物中,都能有效区分活/死细胞混合物中的活金黄色葡萄球菌。所开发的生物传感器代表了一种简单、灵敏、特异和准确的工具,可用于早期检测食品样品中的金黄色葡萄球菌。