Suppr超能文献

应用于人类多囊卵巢综合征的多反应监测(MRM)分析以发现生物标志物

Multiple reaction monitoring (MRM)-profiling for biomarker discovery applied to human polycystic ovarian syndrome.

作者信息

Cordeiro Fernanda B, Ferreira Christina R, Sobreira Tiago Jose P, Yannell Karen E, Jarmusch Alan K, Cedenho Agnaldo P, Lo Turco Edson G, Cooks R Graham

机构信息

Department of Chemistry and Center for Analytical Instrumentation Development (CAID), Purdue University, West Lafayette, IN, 47907, USA.

Department of Surgery, Division of Urology, Human Reproduction Section, Sao Paulo Federal University, Sao Paulo, Brazil.

出版信息

Rapid Commun Mass Spectrom. 2017 Sep 15;31(17):1462-1470. doi: 10.1002/rcm.7927.

Abstract

RATIONALE

We describe multiple reaction monitoring (MRM)-profiling, which provides accelerated discovery of discriminating molecular features, and its application to human polycystic ovary syndrome (PCOS) diagnosis. The discovery phase of the MRM-profiling seeks molecular features based on some prior knowledge of the chemical functional groups likely to be present in the sample. It does this through use of a limited number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of the discovery phase is a set of precursor/product transitions. In the screening phase these MRM transitions are used to interrogate multiple samples (hence the name MRM-profiling).

METHODS

MRM-profiling was applied to follicular fluid samples of 22 controls and 29 clinically diagnosed PCOS patients. Representative samples were delivered by flow injection to a triple quadrupole mass spectrometer set to perform a number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of this discovery phase was a set of 1012 precursor/product transitions. In the screening phase each individual sample was interrogated for these MRM transitions. Principal component analysis (PCA) and receiver operating characteristic (ROC) curves were used for statistical analysis.

RESULTS

To evaluate the method's performance, half the samples were used to build a classification model (testing set) and half were blinded (validation set). Twenty transitions were used for the classification of the blind samples, most of them (N = 19) showed lower abundances in the PCOS group and corresponded to phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Agreement of 73% with clinical diagnosis was found when classifying the 26 blind samples.

CONCLUSIONS

MRM-profiling is a supervised method characterized by its simplicity, speed and the absence of chromatographic separation. It can be used to rapidly isolate discriminating molecules in healthy/disease conditions by tailored screening of signals associated with hundreds of molecules in complex samples.

摘要

原理

我们描述了多反应监测(MRM)分析方法,该方法可加速鉴别性分子特征的发现,并将其应用于人类多囊卵巢综合征(PCOS)的诊断。MRM分析的发现阶段基于对样品中可能存在的化学官能团的一些先验知识来寻找分子特征。它通过使用有限数量的预先选择且具有化学特异性的中性丢失和/或前体离子MS/MS扫描来实现这一点。发现阶段的输出是一组前体/产物跃迁。在筛选阶段,这些MRM跃迁用于检测多个样品(因此称为MRM分析)。

方法

将MRM分析应用于22名对照者和29名临床诊断为PCOS患者的卵泡液样本。代表性样本通过流动注射输送到三重四极杆质谱仪,设置该质谱仪执行一些预先选择且具有化学特异性的中性丢失和/或前体离子MS/MS扫描。这个发现阶段的输出是一组1012个前体/产物跃迁。在筛选阶段,对每个单独的样本检测这些MRM跃迁。主成分分析(PCA)和受试者工作特征(ROC)曲线用于统计分析。

结果

为了评估该方法的性能,一半的样本用于建立分类模型(测试集),另一半样本进行盲测(验证集)。使用20个跃迁对盲测样本进行分类,其中大多数(N = 19)在PCOS组中丰度较低,且对应于磷脂酰乙醇胺(PE)和磷脂酰丝氨酸(PS)脂质。在对26个盲测样本进行分类时,发现与临床诊断的一致性为73%。

结论

MRM分析是一种具有监督性的方法,其特点是简单、快速且无需色谱分离。它可用于通过对复杂样品中与数百种分子相关的信号进行定制筛选,快速分离健康/疾病状态下的鉴别性分子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验