Suppr超能文献

应用 LC-QTOF 进行多重反应监测 (MRM) 分析,结合生物标志物鉴定以表征冠状动脉疾病。

Multiple reaction monitoring (MRM)-profiling with biomarker identification by LC-QTOF to characterize coronary artery disease.

机构信息

Chemistry Department, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Analyst. 2018 Oct 8;143(20):5014-5022. doi: 10.1039/c8an01017j.

Abstract

Metabolite profiling by mass spectrometry (MS) is an area of interest for disease diagnostics, biomarker discovery, and therapeutic evaluation. A recently developed approach, multiple reaction monitoring (MRM)-profiling, searches for metabolites with precursor (Prec) and neutral loss (NL) scans in a representative sample and creates a list of ion transitions. These are then used in an MRM method for fast screening of individual samples and discrimination between healthy and diseased. A large variety of functional groups are considered and all signals discovered are recorded in the individual samples, making this a largely unsupervised method. MRM-profiling is described here and then demonstrated with data for over 900 human plasma coronary artery disease (CAD) samples. Representative pooled samples for each condition were interrogated using a library of over a hundred Prec and NL scans on a triple quadrupole MS. The data from the Prec and NL experiments were converted into ion transitions, initially some 1266 transitions. Each ion transition was examined in the individual samples on a time scale of milliseconds per transition, which allows for rapid screening of large sample sets (<5 days for 1000 samples). Use of univariate and multivariate statistics allowed classification of the sample set with high accuracy. The metabolite profiles classified the CAD female, CAD male, and peripheral artery disease (PAD) samples relative to controls with an accuracy of 90%, 78%, and 85%, respectively. The compounds responsible for informative ion transitions were identified by chromatography and high resolution MS; some have been previously reported and found to be associated with coronary artery disease metabolism, indicating that the methodology generates a meaningful metabolite profile while being faster than traditional methodologies.

摘要

基于质谱(MS)的代谢物分析是疾病诊断、生物标志物发现和治疗评估的研究领域。最近开发的一种方法是多重反应监测(MRM)-分析,该方法在代表性样本中搜索具有前体(Prec)和中性丢失(NL)扫描的代谢物,并创建离子跃迁列表。然后,这些离子跃迁用于 MRM 方法中,以快速筛选单个样本并区分健康和患病个体。该方法考虑了多种功能基团,并且所有发现的信号都在个体样本中记录,这使得该方法在很大程度上是无监督的。本文介绍了 MRM 分析方法,并使用超过 900 个人类血浆冠心病(CAD)样本的数据进行了演示。使用三重四极杆 MS 对每个条件的代表性混合样本进行了超过 100 个 Prec 和 NL 扫描的文库检测。Prec 和 NL 实验的数据转换为离子跃迁,最初约有 1266 个跃迁。每个离子跃迁都在毫秒级的时间尺度上在个体样本中进行检查,这允许快速筛选大量样本集(<5 天即可完成 1000 个样本的筛选)。使用单变量和多变量统计方法可以准确地对样本集进行分类。代谢物谱可以将 CAD 女性、CAD 男性和外周动脉疾病(PAD)样本与对照样本分别准确分类,准确率分别为 90%、78%和 85%。通过色谱和高分辨率 MS 鉴定负责信息性离子跃迁的化合物;其中一些化合物以前曾被报道过,与冠心病代谢有关,表明该方法生成了有意义的代谢物谱,同时比传统方法更快。

相似文献

引用本文的文献

本文引用的文献

2
l-Carnitine and heart disease.左旋肉碱与心脏病
Life Sci. 2018 Feb 1;194:88-97. doi: 10.1016/j.lfs.2017.12.015. Epub 2017 Dec 11.
6
Recent advances in lipidomics: Analytical and clinical perspectives.脂质组学的最新进展:分析与临床视角
Prostaglandins Other Lipid Mediat. 2017 Jan;128-129:8-16. doi: 10.1016/j.prostaglandins.2016.12.002. Epub 2016 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验