Suppr超能文献

用于脱盐和透析应用的纳米多孔原子级薄石墨烯膜。

Nanoporous Atomically Thin Graphene Membranes for Desalting and Dialysis Applications.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37240, USA.

出版信息

Adv Mater. 2017 Sep;29(33). doi: 10.1002/adma.201700277. Epub 2017 Jun 28.

Abstract

Dialysis is a ubiquitous separation process in biochemical processing and biological research. State-of-the-art dialysis membranes comprise a relatively thick polymer layer with tortuous pores, and suffer from low rates of diffusion leading to extremely long process times (often several days) and poor selectivity, especially in the 0-1000 Da molecular weight cut-off range. Here, the fabrication of large-area (cm ) nanoporous atomically thin membranes (NATMs) is reported, by transferring graphene synthesized using scalable chemical vapor deposition (CVD) to polycarbonate track-etched supports. After sealing defects introduced during transfer/handling by interfacial polymerization, a facile oxygen-plasma etch is used to create size-selective pores (≤1 nm) in the CVD graphene. Size-selective separation and desalting of small model molecules (≈200-1355 Da) and proteins (≈14 000 Da) are demonstrated, with ≈1-2 orders of magnitude increase in permeance compared to state-of-the-art commercial membranes. Rapid diffusion and size-selectivity in NATMs offers transformative opportunities in purification of drugs, removal of residual reactants, biochemical analytics, medical diagnostics, therapeutics, and nano-bio separations.

摘要

透析是生化处理和生物研究中普遍存在的分离过程。最先进的透析膜由相对较厚的聚合物层和曲折的孔组成,扩散速率低,导致过程时间极长(通常为数天),选择性差,特别是在 0-1000 Da 分子量截断范围内。在这里,通过将使用可扩展化学气相沉积 (CVD) 合成的石墨烯转移到聚碳酸酯轨迹蚀刻支撑体上,报道了大面积(cm )纳米多孔原子级薄膜(NATMs)的制造。在界面聚合过程中密封转移/处理过程中引入的缺陷后,使用简单的氧气等离子体刻蚀在 CVD 石墨烯中创建尺寸选择性孔(≤1nm)。对小分子模型(≈200-1355 Da)和蛋白质(≈14000 Da)进行了尺寸选择性分离和脱盐,与最先进的商业膜相比,渗透率提高了约 1-2 个数量级。NATMs 的快速扩散和尺寸选择性为药物纯化、残留反应物去除、生化分析、医学诊断、治疗和纳米生物分离提供了变革性的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验