Cheng Peifu, Kelly Mattigan M, Moehring Nicole K, Ko Wonhee, Li An-Ping, Idrobo Juan Carlos, Boutilier Michael S H, Kidambi Piran R
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States.
Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37212, United States.
Nano Lett. 2020 Aug 12;20(8):5951-5959. doi: 10.1021/acs.nanolett.0c01934. Epub 2020 Jul 17.
Atomically thin graphene with a high-density of precise subnanometer pores represents the ideal membrane for ionic and molecular separations. However, a single large-nanopore can severely compromise membrane performance and differential etching between pre-existing defects/grain boundaries in graphene and pristine regions presents fundamental limitations. Here, we show for the first time that size-selective interfacial polymerization after high-density nanopore formation in graphene not only seals larger defects (>0.5 nm) and macroscopic tears but also successfully preserves the smaller subnanometer pores. Low-temperature growth followed by mild UV/ozone oxidation allows for facile and scalable formation of high-density (4-5.5 × 10 cm) useful subnanometer pores in the graphene lattice. We demonstrate scalable synthesis of fully functional centimeter-scale nanoporous atomically thin membranes (NATMs) with water (∼0.28 nm) permeance ∼23× higher than commercially available membranes and excellent rejection to salt ions (∼0.66 nm, >97% rejection) as well as small organic molecules (∼0.7-1.5 nm, ∼100% rejection) under forward osmosis.
具有高密度精确亚纳米孔的原子级薄石墨烯是离子和分子分离的理想膜材料。然而,单个大纳米孔会严重损害膜的性能,并且石墨烯中预先存在的缺陷/晶界与原始区域之间的差异蚀刻存在根本限制。在此,我们首次表明,在石墨烯中形成高密度纳米孔后进行尺寸选择性界面聚合,不仅可以密封较大的缺陷(>0.5纳米)和宏观撕裂,还能成功保留较小的亚纳米孔。低温生长后进行温和的紫外线/臭氧氧化,可在石墨烯晶格中轻松且可扩展地形成高密度(4 - 5.5×10厘米)有用的亚纳米孔。我们展示了可扩展合成的全功能厘米级纳米多孔原子级薄膜(NATMs),其水渗透率(约0.28纳米)比市售膜高约23倍,在正向渗透下对盐离子(约0.66纳米,截留率>97%)以及小有机分子(约0.7 - 1.5纳米,截留率约100%)具有出色的截留能力。