Suppr超能文献

一种突触前谷氨酸受体亚基赋予神经传递和稳态增强以稳健性。

A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation.

作者信息

Kiragasi Beril, Wondolowski Joyce, Li Yan, Dickman Dion K

机构信息

Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA; USC Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089, USA.

Department of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

Cell Rep. 2017 Jun 27;19(13):2694-2706. doi: 10.1016/j.celrep.2017.06.003.

Abstract

Homeostatic signaling systems are thought to interface with other forms of plasticity to ensure flexible yet stable levels of neurotransmission. The role of neurotransmitter receptors in this process, beyond mediating neurotransmission itself, is not known. Through a forward genetic screen, we have identified the Drosophila kainate-type ionotropic glutamate receptor subunit DKaiR1D to be required for the retrograde, homeostatic potentiation of synaptic strength. DKaiR1D is necessary in presynaptic motor neurons, localized near active zones, and confers robustness to the calcium sensitivity of baseline synaptic transmission. Acute pharmacological blockade of DKaiR1D disrupts homeostatic plasticity, indicating that this receptor is required for the expression of this process, distinct from developmental roles. Finally, we demonstrate that calcium permeability through DKaiR1D is necessary for baseline synaptic transmission, but not for homeostatic signaling. We propose that DKaiR1D is a glutamate autoreceptor that promotes robustness to synaptic strength and plasticity with active zone specificity.

摘要

稳态信号系统被认为与其他形式的可塑性相互作用,以确保神经传递水平灵活而稳定。神经递质受体在这一过程中的作用,除了介导神经传递本身之外,尚不清楚。通过正向遗传学筛选,我们发现果蝇海人酸型离子型谷氨酸受体亚基DKaiR1D是突触强度逆行性稳态增强所必需的。DKaiR1D在突触前运动神经元中是必需的,定位于活性区附近,并赋予基线突触传递钙敏感性以稳健性。急性药理学阻断DKaiR1D会破坏稳态可塑性,表明该受体是这一过程表达所必需的,与发育作用不同。最后,我们证明通过DKaiR1D的钙通透性对于基线突触传递是必需的,但对于稳态信号则不是。我们提出DKaiR1D是一种谷氨酸自身受体,可促进突触强度和可塑性的稳健性,并具有活性区特异性。

相似文献

1
A Presynaptic Glutamate Receptor Subunit Confers Robustness to Neurotransmission and Homeostatic Potentiation.
Cell Rep. 2017 Jun 27;19(13):2694-2706. doi: 10.1016/j.celrep.2017.06.003.
2
The auxiliary glutamate receptor subunit dSol-1 promotes presynaptic neurotransmitter release and homeostatic potentiation.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25830-25839. doi: 10.1073/pnas.1915464117. Epub 2020 Sep 24.
3
Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis.
J Neurosci. 2020 Apr 1;40(14):2817-2827. doi: 10.1523/JNEUROSCI.2002-19.2020. Epub 2020 Mar 2.
4
Snapin is critical for presynaptic homeostatic plasticity.
J Neurosci. 2012 Jun 20;32(25):8716-24. doi: 10.1523/JNEUROSCI.5465-11.2012.
5
Mechanisms underlying the rapid induction and sustained expression of synaptic homeostasis.
Neuron. 2006 Nov 22;52(4):663-77. doi: 10.1016/j.neuron.2006.09.029.
6
A Glutamate Homeostat Controls the Presynaptic Inhibition of Neurotransmitter Release.
Cell Rep. 2018 May 8;23(6):1716-1727. doi: 10.1016/j.celrep.2018.03.130.
7
Pre- and postsynaptic ionotropic glutamate receptors in the auditory system of mammals.
Hear Res. 2018 May;362:1-13. doi: 10.1016/j.heares.2018.02.007. Epub 2018 Feb 28.

引用本文的文献

1
Resolving synaptic events using subsynaptically targeted GCaMP8 variants.
bioRxiv. 2025 Jun 19:2025.06.19.660577. doi: 10.1101/2025.06.19.660577.
2
Distinct input-specific mechanisms enable presynaptic homeostatic plasticity.
Sci Adv. 2025 Feb 14;11(7):eadr0262. doi: 10.1126/sciadv.adr0262.
3
Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions.
Cells. 2024 Oct 11;13(20):1684. doi: 10.3390/cells13201684.
4
Distinct input-specific mechanisms enable presynaptic homeostatic plasticity.
bioRxiv. 2024 Sep 12:2024.09.10.612361. doi: 10.1101/2024.09.10.612361.
5
Using Electrophysiology to Study Homeostatic Plasticity at the Neuromuscular Junction.
Cold Spring Harb Protoc. 2025 May 5;2025(5):pdb.top108393. doi: 10.1101/pdb.top108393.
6
scRNA-seq data from the larval Drosophila ventral cord provides a resource for studying motor systems function and development.
Dev Cell. 2024 May 6;59(9):1210-1230.e9. doi: 10.1016/j.devcel.2024.03.016. Epub 2024 Apr 2.
8
Excess glutamate release triggers subunit-specific homeostatic receptor scaling.
Cell Rep. 2023 Jul 25;42(7):112775. doi: 10.1016/j.celrep.2023.112775. Epub 2023 Jul 11.
9
Physiologic and Nanoscale Distinctions Define Glutamatergic Synapses in Tonic vs Phasic Neurons.
J Neurosci. 2023 Jun 21;43(25):4598-4611. doi: 10.1523/JNEUROSCI.0046-23.2023. Epub 2023 May 23.
10
Glial Draper signaling triggers cross-neuron plasticity in bystander neurons after neuronal cell death.
bioRxiv. 2023 Apr 10:2023.04.09.536190. doi: 10.1101/2023.04.09.536190.

本文引用的文献

1
A Ca2+ channel differentially regulates Clathrin-mediated and activity-dependent bulk endocytosis.
PLoS Biol. 2017 Apr 17;15(4):e2000931. doi: 10.1371/journal.pbio.2000931. eCollection 2017 Apr.
2
The BLOC-1 Subunit Pallidin Facilitates Activity-Dependent Synaptic Vesicle Recycling.
eNeuro. 2017 Feb 8;4(1). doi: 10.1523/ENEURO.0335-16.2017. eCollection 2017 Jan-Feb.
3
Input-Specific Plasticity and Homeostasis at the Drosophila Larval Neuromuscular Junction.
Neuron. 2017 Mar 22;93(6):1388-1404.e10. doi: 10.1016/j.neuron.2017.02.028. Epub 2017 Mar 9.
4
Metabotropic action of postsynaptic kainate receptors triggers hippocampal long-term potentiation.
Nat Neurosci. 2017 Apr;20(4):529-539. doi: 10.1038/nn.4505. Epub 2017 Feb 13.
5
Novel Functional Properties of Drosophila CNS Glutamate Receptors.
Neuron. 2016 Dec 7;92(5):1036-1048. doi: 10.1016/j.neuron.2016.10.058. Epub 2016 Nov 23.
7
Postsynaptic Neurotransmitter Receptor Reserve Pools for Synaptic Potentiation.
Trends Neurosci. 2016 Mar;39(3):170-182. doi: 10.1016/j.tins.2016.01.002. Epub 2016 Jan 30.
8
Presynaptic NMDA receptors: Roles and rules.
Neuroscience. 2015 Dec 17;311:322-40. doi: 10.1016/j.neuroscience.2015.10.033. Epub 2015 Oct 24.
9
Molecular mechanisms governing Ca(2+) regulation of evoked and spontaneous release.
Nat Neurosci. 2015 Jul;18(7):935-41. doi: 10.1038/nn.4044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验