Suppr超能文献

谷氨酰胺和相互关联的天冬酰胺代谢在血管形成中的作用。

Role of glutamine and interlinked asparagine metabolism in vessel formation.

作者信息

Huang Hongling, Vandekeere Saar, Kalucka Joanna, Bierhansl Laura, Zecchin Annalisa, Brüning Ulrike, Visnagri Asjad, Yuldasheva Nadira, Goveia Jermaine, Cruys Bert, Brepoels Katleen, Wyns Sabine, Rayport Stephen, Ghesquière Bart, Vinckier Stefan, Schoonjans Luc, Cubbon Richard, Dewerchin Mieke, Eelen Guy, Carmeliet Peter

机构信息

Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.

Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.

出版信息

EMBO J. 2017 Aug 15;36(16):2334-2352. doi: 10.15252/embj.201695518. Epub 2017 Jun 28.

Abstract

Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.

摘要

内皮细胞(EC)代谢正逐渐成为血管生成的调节因子,但谷氨酰胺代谢在内皮细胞中的具体作用尚不清楚。在此,我们表明,剥夺内皮细胞的谷氨酰胺或抑制谷氨酰胺酶1(GLS1)会导致血管生成缺陷,这是由于增殖和迁移受损以及病理性眼部血管生成减少所致。抑制内皮细胞中的谷氨酰胺代谢不会导致能量危机,但会损害三羧酸(TCA)循环的回补反应、大分子生成和氧化还原稳态。只有TCA循环补充加上天冬酰胺补充的组合才能恢复由谷氨酰胺剥夺引起的代谢异常和增殖缺陷。从机制上讲,谷氨酰胺为天冬酰胺合成提供氮以维持细胞内稳态。虽然内皮细胞可以摄取天冬酰胺,但沉默天冬酰胺合成酶(ASNS,它将谷氨酰胺衍生的氮和天冬氨酸转化为天冬酰胺)会损害内皮细胞的血管生成,即使在存在谷氨酰胺和天冬酰胺的情况下也是如此。天冬酰胺进一步证明在谷氨酰胺剥夺的内皮细胞中对于恢复蛋白质合成、抑制内质网应激和重新激活mTOR信号传导至关重要。这些发现揭示了内皮细胞谷氨酰胺和天冬酰胺代谢在血管生成中的新联系。

相似文献

1
Role of glutamine and interlinked asparagine metabolism in vessel formation.
EMBO J. 2017 Aug 15;36(16):2334-2352. doi: 10.15252/embj.201695518. Epub 2017 Jun 28.
2
Glutamine fuels proliferation but not migration of endothelial cells.
EMBO J. 2017 Aug 15;36(16):2321-2333. doi: 10.15252/embj.201796436. Epub 2017 Jun 28.
4
Glutaminase-1 stimulates the proliferation, migration, and survival of human endothelial cells.
Biochem Pharmacol. 2018 Oct;156:204-214. doi: 10.1016/j.bcp.2018.08.032. Epub 2018 Aug 23.
6
Filamentous GLS1 promotes ROS-induced apoptosis upon glutamine deprivation via insufficient asparagine synthesis.
Mol Cell. 2022 May 19;82(10):1821-1835.e6. doi: 10.1016/j.molcel.2022.03.016. Epub 2022 Apr 4.
7
HMGA2-mediated glutamine metabolism is required for Cd-induced cell growth and cell migration.
Toxicology. 2024 Sep;507:153899. doi: 10.1016/j.tox.2024.153899. Epub 2024 Jul 19.
8
Role of glutamine synthetase in angiogenesis beyond glutamine synthesis.
Nature. 2018 Sep;561(7721):63-69. doi: 10.1038/s41586-018-0466-7. Epub 2018 Aug 29.
9
Endothelial cell-derived non-canonical Wnt ligands control vascular pruning in angiogenesis.
Development. 2014 Apr;141(8):1757-66. doi: 10.1242/dev.104422.

引用本文的文献

3
mTORC1 senses glutamine and other amino acids through GCN2.
EMBO J. 2025 Jul 21. doi: 10.1038/s44318-025-00505-1.
4
How endothelial cell metabolism shapes blood-brain barrier integrity in neurodegeneration.
Front Mol Neurosci. 2025 Jun 25;18:1623321. doi: 10.3389/fnmol.2025.1623321. eCollection 2025.
6
Inhibition of CCT5-mediated asparagine biosynthesis and anti-PD-L1 produce synergistic antitumor effects in colorectal cancer.
Acta Pharm Sin B. 2025 May;15(5):2480-2497. doi: 10.1016/j.apsb.2025.03.026. Epub 2025 Mar 14.
7
siRNA micelleplexes-mediated glutamine metabolism re-engineering for vascular normalization-boosted photo-immunotherapy.
Acta Pharm Sin B. 2025 Apr;15(4):2237-2252. doi: 10.1016/j.apsb.2025.02.020. Epub 2025 Feb 21.
9
Defective Endothelial Glutaminolysis Contributes to Impaired Angiogenesis and Poor Ischemic Tissue Repair in Diabetes.
Research (Wash D C). 2025 May 22;8:0706. doi: 10.34133/research.0706. eCollection 2025.
10
Metabolic and Immune Crosstalk in Cardiovascular Disease.
Circ Res. 2025 May 23;136(11):1433-1453. doi: 10.1161/CIRCRESAHA.125.325496. Epub 2025 May 22.

本文引用的文献

1
Glutamine fuels proliferation but not migration of endothelial cells.
EMBO J. 2017 Aug 15;36(16):2321-2333. doi: 10.15252/embj.201796436. Epub 2017 Jun 28.
3
Cancer cell metabolism: the essential role of the nonessential amino acid, glutamine.
EMBO J. 2017 May 15;36(10):1302-1315. doi: 10.15252/embj.201696151. Epub 2017 Apr 18.
4
Interaction of endothelial cells with macrophages-linking molecular and metabolic signaling.
Pflugers Arch. 2017 Apr;469(3-4):473-483. doi: 10.1007/s00424-017-1946-6. Epub 2017 Feb 24.
6
Selective Enhancement of Insulin Sensitivity in the Endothelium In Vivo Reveals a Novel Proatherosclerotic Signaling Loop.
Circ Res. 2017 Mar 3;120(5):784-798. doi: 10.1161/CIRCRESAHA.116.309678. Epub 2016 Dec 5.
7
Targeting asparagine and autophagy for pulmonary adenocarcinoma therapy.
Appl Microbiol Biotechnol. 2016 Nov;100(21):9145-9161. doi: 10.1007/s00253-016-7640-3. Epub 2016 Jun 1.
8
Child Stunting is Associated with Low Circulating Essential Amino Acids.
EBioMedicine. 2016 Apr;6:246-252. doi: 10.1016/j.ebiom.2016.02.030. Epub 2016 Feb 19.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验