Suppr超能文献

谷氨酰胺和相互关联的天冬酰胺代谢在血管形成中的作用。

Role of glutamine and interlinked asparagine metabolism in vessel formation.

作者信息

Huang Hongling, Vandekeere Saar, Kalucka Joanna, Bierhansl Laura, Zecchin Annalisa, Brüning Ulrike, Visnagri Asjad, Yuldasheva Nadira, Goveia Jermaine, Cruys Bert, Brepoels Katleen, Wyns Sabine, Rayport Stephen, Ghesquière Bart, Vinckier Stefan, Schoonjans Luc, Cubbon Richard, Dewerchin Mieke, Eelen Guy, Carmeliet Peter

机构信息

Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.

Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.

出版信息

EMBO J. 2017 Aug 15;36(16):2334-2352. doi: 10.15252/embj.201695518. Epub 2017 Jun 28.

Abstract

Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.

摘要

内皮细胞(EC)代谢正逐渐成为血管生成的调节因子,但谷氨酰胺代谢在内皮细胞中的具体作用尚不清楚。在此,我们表明,剥夺内皮细胞的谷氨酰胺或抑制谷氨酰胺酶1(GLS1)会导致血管生成缺陷,这是由于增殖和迁移受损以及病理性眼部血管生成减少所致。抑制内皮细胞中的谷氨酰胺代谢不会导致能量危机,但会损害三羧酸(TCA)循环的回补反应、大分子生成和氧化还原稳态。只有TCA循环补充加上天冬酰胺补充的组合才能恢复由谷氨酰胺剥夺引起的代谢异常和增殖缺陷。从机制上讲,谷氨酰胺为天冬酰胺合成提供氮以维持细胞内稳态。虽然内皮细胞可以摄取天冬酰胺,但沉默天冬酰胺合成酶(ASNS,它将谷氨酰胺衍生的氮和天冬氨酸转化为天冬酰胺)会损害内皮细胞的血管生成,即使在存在谷氨酰胺和天冬酰胺的情况下也是如此。天冬酰胺进一步证明在谷氨酰胺剥夺的内皮细胞中对于恢复蛋白质合成、抑制内质网应激和重新激活mTOR信号传导至关重要。这些发现揭示了内皮细胞谷氨酰胺和天冬酰胺代谢在血管生成中的新联系。

相似文献

引用本文的文献

10
Metabolic and Immune Crosstalk in Cardiovascular Disease.心血管疾病中的代谢与免疫相互作用
Circ Res. 2025 May 23;136(11):1433-1453. doi: 10.1161/CIRCRESAHA.125.325496. Epub 2025 May 22.

本文引用的文献

7
Targeting asparagine and autophagy for pulmonary adenocarcinoma therapy.针对肺腺癌的 asparagine 和自噬靶向治疗。
Appl Microbiol Biotechnol. 2016 Nov;100(21):9145-9161. doi: 10.1007/s00253-016-7640-3. Epub 2016 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验