Huang Hongling, Vandekeere Saar, Kalucka Joanna, Bierhansl Laura, Zecchin Annalisa, Brüning Ulrike, Visnagri Asjad, Yuldasheva Nadira, Goveia Jermaine, Cruys Bert, Brepoels Katleen, Wyns Sabine, Rayport Stephen, Ghesquière Bart, Vinckier Stefan, Schoonjans Luc, Cubbon Richard, Dewerchin Mieke, Eelen Guy, Carmeliet Peter
Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
EMBO J. 2017 Aug 15;36(16):2334-2352. doi: 10.15252/embj.201695518. Epub 2017 Jun 28.
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.
内皮细胞(EC)代谢正逐渐成为血管生成的调节因子,但谷氨酰胺代谢在内皮细胞中的具体作用尚不清楚。在此,我们表明,剥夺内皮细胞的谷氨酰胺或抑制谷氨酰胺酶1(GLS1)会导致血管生成缺陷,这是由于增殖和迁移受损以及病理性眼部血管生成减少所致。抑制内皮细胞中的谷氨酰胺代谢不会导致能量危机,但会损害三羧酸(TCA)循环的回补反应、大分子生成和氧化还原稳态。只有TCA循环补充加上天冬酰胺补充的组合才能恢复由谷氨酰胺剥夺引起的代谢异常和增殖缺陷。从机制上讲,谷氨酰胺为天冬酰胺合成提供氮以维持细胞内稳态。虽然内皮细胞可以摄取天冬酰胺,但沉默天冬酰胺合成酶(ASNS,它将谷氨酰胺衍生的氮和天冬氨酸转化为天冬酰胺)会损害内皮细胞的血管生成,即使在存在谷氨酰胺和天冬酰胺的情况下也是如此。天冬酰胺进一步证明在谷氨酰胺剥夺的内皮细胞中对于恢复蛋白质合成、抑制内质网应激和重新激活mTOR信号传导至关重要。这些发现揭示了内皮细胞谷氨酰胺和天冬酰胺代谢在血管生成中的新联系。