Suppr超能文献

用于测量帕金森病运动功能的生物识别数字健康技术:一项可行性和患者满意度研究的结果

Biometric Digital Health Technology for Measuring Motor Function in Parkinson's Disease: Results from a Feasibility and Patient Satisfaction Study.

作者信息

Mitsi Georgia, Mendoza Enrique Urrea, Wissel Benjamin D, Barbopoulou Elena, Dwivedi Alok K, Tsoulos Ioannis, Stavrakoudis Athanassios, Espay Alberto J, Papapetropoulos Spyros

机构信息

Apptomics Inc., Wellesley, MA, United States.

Neuroscience Associates, Greenville Health System, Greenville, SC, United States.

出版信息

Front Neurol. 2017 Jun 13;8:273. doi: 10.3389/fneur.2017.00273. eCollection 2017.

Abstract

OBJECTIVES

To assess the feasibility, predictive value, and user satisfaction of objectively quantifying motor function in Parkinson's disease (PD) through a tablet-based application (iMotor) using self-administered tests.

METHODS

PD and healthy controls (HCs) performed finger tapping, hand pronation-supination and reaction time tasks using the iMotor application.

RESULTS

Thirty-eight participants (19 with PD and 17 HCs) were recruited in the study. PD subjects were 53% male, with a mean age of 67.8 years (±8.8), mean disease duration of 6.5 years (±4.6), Movement Disorders Society version of the Unified Parkinson Disease Rating Scale III score 26.3 (±6.7), and Hoehn & Yahr stage 2. In the univariate analysis, most tapping variables were significantly different in PD compared to HC. Tap interval provided the highest predictive ability (90%). In the multivariable logistic regression model reaction time (reaction time test) ( = 0.021) and total taps (two-target test) ( = 0.026) were associated with PD. A combined model with two-target (total taps and accuracy) and reaction time produced maximum discriminatory performance between HC and PD. The overall accuracy of the combined model was 0.98 (95% confidence interval: 0.93-1). iMotor use achieved high rates of patients' satisfaction as evaluated by a patient satisfaction survey.

CONCLUSION

iMotor differentiated PD subjects from HCs using simple alternating tasks of motor function. Results of this feasibility study should be replicated in larger, longitudinal, appropriately designed, controlled studies. The impact on patient care of at-home iMotor-assisted remote monitoring also deserves further evaluation.

摘要

目的

通过基于平板电脑的应用程序(iMotor)使用自我管理测试来评估客观量化帕金森病(PD)运动功能的可行性、预测价值和用户满意度。

方法

帕金森病患者(PD)和健康对照者(HCs)使用iMotor应用程序进行手指敲击、手部旋前-旋后和反应时间任务。

结果

本研究招募了38名参与者(19名帕金森病患者和17名健康对照者)。帕金森病患者中男性占53%,平均年龄67.8岁(±8.8),平均病程6.5年(±4.6),运动障碍协会统一帕金森病评定量表III得分26.3(±6.7),Hoehn & Yahr分期为2期。在单变量分析中,与健康对照者相比,帕金森病患者的大多数敲击变量有显著差异。敲击间隔的预测能力最高(90%)。在多变量逻辑回归模型中,反应时间(反应时间测试)(=0.021)和总敲击次数(双目标测试)(=0.026)与帕金森病相关。一个包含双目标(总敲击次数和准确性)和反应时间的组合模型在健康对照者和帕金森病患者之间产生了最大的区分性能。组合模型的总体准确率为0.98(95%置信区间:0.93-1)。通过患者满意度调查评估,使用iMotor获得了较高的患者满意度。

结论

iMotor通过简单的运动功能交替任务区分帕金森病患者和健康对照者。这项可行性研究的结果应在更大规模、纵向、设计合理的对照研究中重复验证。在家中使用iMotor辅助远程监测对患者护理的影响也值得进一步评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cdfc/5468407/4d7fc2d8281d/fneur-08-00273-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验