Suppr超能文献

使用机器学习方法预测新生血管性年龄相关性黄斑变性的抗VEGF治疗需求

Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach.

作者信息

Bogunovic Hrvoje, Waldstein Sebastian M, Schlegl Thomas, Langs Georg, Sadeghipour Amir, Liu Xuhui, Gerendas Bianca S, Osborne Aaron, Schmidt-Erfurth Ursula

机构信息

Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria.

Christian Doppler Laboratory for Ophthalmic Image Analysis, Department of Ophthalmology, Medical University of Vienna, Vienna, Austria 2Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.

出版信息

Invest Ophthalmol Vis Sci. 2017 Jun 1;58(7):3240-3248. doi: 10.1167/iovs.16-21053.

Abstract

PURPOSE

The purpose of this study was to predict low and high anti-VEGF injection requirements during a pro re nata (PRN) treatment, based on sets of optical coherence tomography (OCT) images acquired during the initiation phase in neovascular AMD.

METHODS

Two-year clinical trial data of subjects receiving PRN ranibizumab according to protocol specified criteria in the HARBOR study after three initial monthly injections were included. OCT images were analyzed at baseline, month 1, and month 2. Quantitative spatio-temporal features computed from automated segmentation of retinal layers and fluid-filled regions were used to describe the macular microstructure. In addition, best-corrected visual acuity and demographic characteristics were included. Patients were grouped into low and high treatment categories based on first and third quartile, respectively. Random forest classification was used to learn and predict treatment categories and was evaluated with cross-validation.

RESULTS

Of 317 evaluable subjects, 71 patients presented low (≤5), 176 medium, and 70 high (≥16) injection requirements during the PRN maintenance phase from month 3 to month 23. Classification of low and high treatment requirement subgroups demonstrated an area under the receiver operating characteristic curve of 0.7 and 0.77, respectively. The most relevant feature for prediction was subretinal fluid volume in the central 3 mm, with the highest predictive values at month 2.

CONCLUSIONS

We proposed and evaluated a machine learning methodology to predict anti-VEGF treatment needs from OCT scans taken during treatment initiation. The results of this pilot study are an important step toward image-guided prediction of treatment intervals in the management of neovascular AMD.

摘要

目的

本研究的目的是基于新生血管性年龄相关性黄斑变性(AMD)起始阶段获取的光学相干断层扫描(OCT)图像集,预测按需(PRN)治疗期间抗VEGF注射需求的低和高情况。

方法

纳入在HARBOR研究中,根据方案指定标准接受PRN雷珠单抗治疗的受试者的两年临床试验数据,这些受试者在最初每月注射三次后。在基线、第1个月和第2个月分析OCT图像。从视网膜层和液性区域的自动分割计算出的定量时空特征用于描述黄斑微结构。此外,纳入最佳矫正视力和人口统计学特征。患者分别根据第一和第三四分位数分为低治疗组和高治疗组。使用随机森林分类法学习和预测治疗组,并通过交叉验证进行评估。

结果

在317名可评估的受试者中,71名患者在第3个月至第23个月的PRN维持阶段表现出低(≤5次)、176名中等和70名高(≥16次)注射需求。低治疗需求亚组和高治疗需求亚组的分类显示,受试者操作特征曲线下面积分别为0.7和0.77。预测最相关的特征是中心3mm区域的视网膜下液体积,在第2个月时预测值最高。

结论

我们提出并评估了一种机器学习方法,以从治疗起始时拍摄的OCT扫描预测抗VEGF治疗需求。这项初步研究的结果是朝着新生血管性AMD管理中治疗间隔的图像引导预测迈出的重要一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验