Suppr超能文献

基于 EEG 和眼动数据及机器学习算法的外科手术技能水平分类模型的建立。

Surgical skill level classification model development using EEG and eye-gaze data and machine learning algorithms.

机构信息

Intelligent Cancer Care Laboratory, Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.

Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.

出版信息

J Robot Surg. 2023 Dec;17(6):2963-2971. doi: 10.1007/s11701-023-01722-8. Epub 2023 Oct 21.

Abstract

The aim of this study was to develop machine learning classification models using electroencephalogram (EEG) and eye-gaze features to predict the level of surgical expertise in robot-assisted surgery (RAS). EEG and eye-gaze data were recorded from 11 participants who performed cystectomy, hysterectomy, and nephrectomy using the da Vinci robot. Skill level was evaluated by an expert RAS surgeon using the modified Global Evaluative Assessment of Robotic Skills (GEARS) tool, and data from three subtasks were extracted to classify skill levels using three classification models-multinomial logistic regression (MLR), random forest (RF), and gradient boosting (GB). The GB algorithm was used with a combination of EEG and eye-gaze data to classify skill levels, and differences between the models were tested using two-sample t tests. The GB model using EEG features showed the best performance for blunt dissection (83% accuracy), retraction (85% accuracy), and burn dissection (81% accuracy). The combination of EEG and eye-gaze features using the GB algorithm improved the accuracy of skill level classification to 88% for blunt dissection, 93% for retraction, and 86% for burn dissection. The implementation of objective skill classification models in clinical settings may enhance the RAS surgical training process by providing objective feedback about performance to surgeons and their teachers.

摘要

本研究旨在开发基于脑电图 (EEG) 和眼动特征的机器学习分类模型,以预测机器人辅助手术 (RAS) 中的手术技能水平。从 11 名参与者记录了他们使用达芬奇机器人进行的膀胱切除术、子宫切除术和肾切除术的 EEG 和眼动数据。技能水平由一位专家使用改良的全球机器人技能评估工具 (GEARS) 进行评估,并从三个子任务中提取数据,使用三种分类模型——多项逻辑回归 (MLR)、随机森林 (RF) 和梯度提升 (GB) 对技能水平进行分类。使用 EEG 和眼动数据的组合来对 GB 算法进行分类,使用双样本 t 检验测试模型之间的差异。使用 EEG 特征的 GB 模型在钝性解剖 (83%准确率)、回缩 (85%准确率) 和烧伤解剖 (81%准确率) 方面表现最佳。使用 GB 算法结合 EEG 和眼动特征提高了钝性解剖 (88%准确率)、回缩 (93%准确率) 和烧伤解剖 (86%准确率) 的技能水平分类的准确性。在临床环境中实施客观技能分类模型可以通过向外科医生及其老师提供有关表现的客观反馈来增强 RAS 手术培训过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cef9/10678814/906a3e676b7e/11701_2023_1722_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验