Bio-Inspired Solar Energy Program, Canadian Institute for Advanced Research , Toronto, Ontario M5G 1Z8, Canada.
Department of Electrical and Computer Engineering, University of Toronto , Toronto, Ontario M5S 3G4, Canada.
J Am Chem Soc. 2017 Jul 12;139(27):9359-9363. doi: 10.1021/jacs.7b04892. Epub 2017 Jun 29.
Using renewable energy to recycle CO provides an opportunity to both reduce net CO emissions and synthesize fuels and chemical feedstocks. It is of central importance to design electrocatalysts that both are efficient and can access a tunable spectrum of products. Syngas, a mixture of carbon monoxide (CO) and hydrogen (H), is an important chemical precursor that can be converted downstream into small molecules or larger hydrocarbons by fermentation or thermochemistry. Many processes that utilize syngas require different syngas compositions: we therefore pursued the rational design of a family of electrocatalysts that can be programmed to synthesize different designer syngas ratios. We utilize in situ surface-enhanced Raman spectroscopy and first-principles density functional theory calculations to develop a systematic picture of CO* binding on Cu-enriched Au surface model systems. Insights from these model systems are then translated to nanostructured electrocatalysts, whereby controlled Cu enrichment enables tunable syngas production while maintaining current densities greater than 20 mA/cm.
利用可再生能源回收 CO 不仅提供了减少净 CO 排放和合成燃料和化学原料的机会。设计高效且可访问可调谐产品范围的电催化剂至关重要。合成气是一氧化碳 (CO) 和氢气 (H) 的混合物,是一种重要的化学前体,可通过发酵或热化学转化为小分子或更大的碳氢化合物。许多利用合成气的工艺需要不同的合成气组成:因此,我们追求合理设计一系列电催化剂,这些电催化剂可以编程以合成不同的设计合成气比。我们利用原位表面增强拉曼光谱和第一性原理密度泛函理论计算来开发铜富集 Au 表面模型系统上 CO*结合的系统图。然后将这些模型系统的见解转化为纳米结构电催化剂,其中受控的 Cu 富集可实现可调谐的合成气生产,同时保持大于 20 mA/cm 的电流密度。