Houdayer Jérôme, Poitevin Frédéric
Institut de Physique Théorique, Université Paris Saclay, CEA, UMR 3681 du CNRS, Gif-sur-Yvette, France.
Department of Structural Biology, Stanford, CA 94305, USA.
Acta Crystallogr A Found Adv. 2017 Jul 1;73(Pt 4):317-332. doi: 10.1107/S205327331700451X. Epub 2017 Jun 9.
This paper shows how small-angle scattering (SAS) curves can be decomposed in a simple sum using a set of invariant parameters called K which are related to the shape of the object of study. These K, together with a radius R, give a complete theoretical description of the SAS curve. Adding an overall constant, these parameters are easily fitted against experimental data giving a concise comprehensive description of the data. The pair distance distribution function is also entirely described by this invariant set and the D parameter can be measured. In addition to the understanding they bring, these invariants can be used to reliably estimate structural moments beyond the radius of gyration, thereby rigorously expanding the actual set of model-free quantities one can extract from experimental SAS data, and possibly paving the way to designing new shape reconstruction strategies.
本文展示了如何使用一组称为K的不变参数,将小角散射(SAS)曲线分解为简单的总和,这些参数与研究对象的形状相关。这些K参数与半径R一起,给出了SAS曲线的完整理论描述。加上一个总体常数,这些参数很容易与实验数据拟合,从而对数据给出简洁而全面的描述。对距离分布函数也完全由这组不变量描述,并且可以测量D参数。除了带来的理解之外,这些不变量还可用于可靠地估计回转半径之外的结构矩,从而严格扩展了可以从实验SAS数据中提取的无模型量的实际集合,并可能为设计新的形状重建策略铺平道路。