Suppr超能文献

小角散射测量信号的信息论优化

Information theory optimization of signals from small-angle scattering measurements.

作者信息

Rambo Robert P, Tainer John A

机构信息

Diamond Light Source Limited, Harwell Science and Innovation Campus, Didcot, United Kingdom.

Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California; Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.

出版信息

Biophys J. 2025 Aug 5;124(15):2511-2522. doi: 10.1016/j.bpj.2025.06.031. Epub 2025 Jun 27.

Abstract

Small-angle X-ray scattering (SAXS) of particles in solution informs on the conformational states and assemblies of biological macromolecules (bioSAXS) outside of cryo- and solid-state conditions. In bioSAXS, the SAXS measurement under dilute conditions is resolution limited, and through an inverse Fourier transform, the measured SAXS intensities directly relate to the physical space occupied by the particles via the P(r)-distribution. Yet, this inverse transform of SAXS data has been historically cast as an ill-posed, ill-conditioned problem requiring an indirect approach. Here, we show that through the applications of matrix and information theories, the inverse transform of SAXS intensity data is a well-conditioned problem. The so-called ill-conditioning of the inverse problem is directly related to the Shannon number. By exploiting the oversampling enabled by modern detectors, a direct inverse Fourier transform of the SAXS data is possible, provided the recovered information does not exceed the Shannon number. The Shannon limit corresponds to the maximum number of significant singular values that can be recovered in a SAXS experiment, suggesting this relationship is a fundamental property of band-limited inverse integral transform problems. This correspondence reduces the complexity of the inverse problem to the Shannon limit and maximum dimension. We propose a hybrid scoring function using an information theory framework that assesses both the quality of the model-data fit as well as the quality of the recovered P(r)-distribution. The hybrid score utilizes the Akaike information criteria and Durbin-Watson statistic that considers parameter-model complexity, i.e., degrees of freedom, and the randomness of the model-data residuals. The described tests and findings extend the boundaries for bioSAXS by completing the information theory formalism initiated by Peter B. Moore to enable a quantitative measure of resolution in SAXS, robustly determine maximum dimension, and more precisely define the best parameter model appropriately representing the observed scattering data.

摘要

溶液中颗粒的小角X射线散射(SAXS)能够提供关于生物大分子在低温和固态条件之外的构象状态和组装情况(生物SAXS)的信息。在生物SAXS中,稀溶液条件下的SAXS测量受分辨率限制,通过傅里叶逆变换,测量得到的SAXS强度通过P(r)分布直接与颗粒所占据的物理空间相关。然而,SAXS数据的这种逆变换在历史上一直被视为一个不适定、病态的问题,需要采用间接方法。在此,我们表明,通过应用矩阵和信息理论,SAXS强度数据的逆变换是一个良态问题。逆问题的所谓病态直接与香农数相关。通过利用现代探测器实现的过采样,只要恢复的信息不超过香农数,就可以对SAXS数据进行直接傅里叶逆变换。香农极限对应于SAXS实验中可以恢复的最大显著奇异值数量,这表明这种关系是带限逆积分变换问题的一个基本属性。这种对应关系将逆问题的复杂性降低到香农极限和最大维度。我们提出了一种使用信息理论框架的混合评分函数,该函数既能评估模型与数据的拟合质量,又能评估恢复的P(r)分布的质量。混合评分利用了赤池信息准则和考虑参数模型复杂性(即自由度)以及模型数据残差随机性的德宾 - 沃森统计量。所描述的测试和发现扩展了生物SAXS的边界,通过完善彼得·B·摩尔开创的信息理论形式体系,能够对SAXS中的分辨率进行定量测量,稳健地确定最大维度,并更精确地定义能恰当表示观测散射数据的最佳参数模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a0b3/12414664/c174857aa9d9/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验