文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Muscle-driven forward dynamic active hybrid model of the lumbosacral spine: combined FEM and multibody simulation.

作者信息

Remus Robin, Selkmann Sascha, Lipphaus Andreas, Neumann Marc, Bender Beate

机构信息

Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany.

Biomechanics Research Group, Chair of Product Development, Department of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany.

出版信息

Front Bioeng Biotechnol. 2023 Sep 27;11:1223007. doi: 10.3389/fbioe.2023.1223007. eCollection 2023.


DOI:10.3389/fbioe.2023.1223007
PMID:37829567
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10565495/
Abstract

Most spine models belong to either the musculoskeletal multibody (MB) or finite element (FE) method. Recently, coupling of MB and FE models has increasingly been used to combine advantages of both methods. Active hybrid FE-MB models, still rarely used in spine research, avoid the interface and convergence problems associated with model coupling. They provide the inherent ability to account for the full interplay of passive and active mechanisms for spinal stability. In this paper, we developed and validated a novel muscle-driven forward dynamic active hybrid FE-MB model of the lumbosacral spine (LSS) in ArtiSynth to simultaneously calculate muscle activation patterns, vertebral movements, and internal mechanical loads. The model consisted of the rigid vertebrae L1-S1 interconnected with hyperelastic fiber-reinforced FE intervertebral discs, ligaments, facet joints, and force actuators representing the muscles. Morphological muscle data were implemented via a semi-automated registration procedure. Four auxiliary bodies were utilized to describe non-linear muscle paths by wrapping and attaching the anterior abdominal muscles. This included an abdominal plate whose kinematics was optimized using motion capture data from upper body movements. Intra-abdominal pressure was calculated from the forces of the abdominal muscles compressing the abdominal cavity. For the muscle-driven approach, forward dynamics assisted data tracking was used to predict muscle activation patterns that generate spinal postures and balance the spine without prescribing accurate spinal kinematics. During calibration, the maximum specific muscle tension and spinal rhythms resulting from the model dynamics were evaluated. To validate the model, load cases were simulated from -10° extension to +30° flexion with weights up to 20 kg in both hands. The biomechanical model responses were compared with literature data of intradiscal pressures, intra-abdominal pressures, and muscle activities. The results demonstrated high agreement with this data and highlight the advantages of active hybrid modeling for the LSS. Overall, this new self-contained tool provides a robust and efficient estimation of LSS biomechanical responses under similar loads, for example, to improve pain treatment by spinal stabilization therapies.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/cee8a82fa947/fbioe-11-1223007-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/a82c2cbbef85/fbioe-11-1223007-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/071933e7b315/fbioe-11-1223007-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/4c2d5300a2f9/fbioe-11-1223007-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/9a5fbeb4d53f/fbioe-11-1223007-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/c3fe21114afe/fbioe-11-1223007-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/0cd49a327db7/fbioe-11-1223007-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/9e3e05bccf6d/fbioe-11-1223007-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/515925ed6aa3/fbioe-11-1223007-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/367e66b2ad02/fbioe-11-1223007-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/1d2704c0ffa3/fbioe-11-1223007-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/cee8a82fa947/fbioe-11-1223007-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/a82c2cbbef85/fbioe-11-1223007-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/071933e7b315/fbioe-11-1223007-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/4c2d5300a2f9/fbioe-11-1223007-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/9a5fbeb4d53f/fbioe-11-1223007-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/c3fe21114afe/fbioe-11-1223007-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/0cd49a327db7/fbioe-11-1223007-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/9e3e05bccf6d/fbioe-11-1223007-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/515925ed6aa3/fbioe-11-1223007-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/367e66b2ad02/fbioe-11-1223007-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/1d2704c0ffa3/fbioe-11-1223007-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d47/10565495/cee8a82fa947/fbioe-11-1223007-g011.jpg

相似文献

[1]
Muscle-driven forward dynamic active hybrid model of the lumbosacral spine: combined FEM and multibody simulation.

Front Bioeng Biotechnol. 2023-9-27

[2]
Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth-The passive structures.

PLoS One. 2021-4-26

[3]
Loads distributed in vivo among vertebrae, muscles, spinal ligaments, and intervertebral discs in a passively flexed lumbar spine.

Biomech Model Mechanobiol. 2020-12

[4]
Load-sharing in the lumbosacral spine in neutral standing & flexed postures - A combined finite element and inverse static study.

J Biomech. 2018-3-21

[5]
Effects of lumbo-pelvic rhythm on trunk muscle forces and disc loads during forward flexion: A combined musculoskeletal and finite element simulation study.

J Biomech. 2019-1-3

[6]
Prediction of Cervical Spinal Joint Loading and Secondary Motion Using a Musculoskeletal Multibody Dynamics Model Via Force-Dependent Kinematics Approach.

Spine (Phila Pa 1976). 2017-12-15

[7]
Trunk Hybrid Passive-Active Musculoskeletal Modeling to Determine the Detailed T12-S1 Response Under In Vivo Loads.

Ann Biomed Eng. 2018-6-26

[8]
On the load-sharing along the ligamentous lumbosacral spine in flexed and extended postures: Finite element study.

J Biomech. 2016-4-11

[9]
Spinal muscle forces, internal loads and stability in standing under various postures and loads--application of kinematics-based algorithm.

Eur Spine J. 2005-5

[10]
Trunk active response and spinal forces in sudden forward loading: analysis of the role of perturbation load and pre-perturbation conditions by a kinematics-driven model.

J Biomech. 2015-1-2

引用本文的文献

[1]
Advances in Musculoskeletal Modeling of the Thoraco-Lumbar Spine: A Comprehensive Systematic Review.

Ann Biomed Eng. 2025-9-5

[2]
ROCK-dependent mechanotransduction of macroscale forces drives fibrosis in degenerative spinal disease.

Nat Biomed Eng. 2025-5-29

[3]
A Muscle-Driven Spine Model for Predictive Simulations in the Design of Spinal Implants and Lumbar Orthoses.

Bioengineering (Basel). 2025-3-6

[4]
A rig for in vitro testing of the lumbar spine and pelvis simulating posterior, anterior and oblique trunk muscles.

Sci Rep. 2025-3-18

[5]
Soft tissue material properties based on human abdominal macro-indenter measurements.

Front Bioeng Biotechnol. 2024-5-24

本文引用的文献

[1]
Recent Advances in Coupled MBS and FEM Models of the Spine-A Review.

Bioengineering (Basel). 2023-3-1

[2]
Effects of geometric individualisation of a human spine model on load sharing: neuro-musculoskeletal simulation reveals significant differences in ligament and muscle contribution.

Biomech Model Mechanobiol. 2023-4

[3]
Computational lumbar spine models: A literature review.

Clin Biomech (Bristol). 2022-12

[4]
Validation of a Patient-Specific Musculoskeletal Model for Lumbar Load Estimation Generated by an Automated Pipeline From Whole Body CT.

Front Bioeng Biotechnol. 2022-7-11

[5]
Biomechanical Properties of Paraspinal Muscles Influence Spinal Loading-A Musculoskeletal Simulation Study.

Front Bioeng Biotechnol. 2022-6-2

[6]
Novel force-displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models.

J Biomech. 2022-8

[7]
The Simulation of Muscles Forces Increases the Stresses in Lumbar Fixation Implants with Respect to Pure Moment Loading.

Front Bioeng Biotechnol. 2021-11-22

[8]
A Reference Database of Standardised Continuous Lumbar Intervertebral Motion Analysis for Conducting Patient-Specific Comparisons.

Front Bioeng Biotechnol. 2021-9-27

[9]
Iatrogenic muscle damage in transforaminal lumbar interbody fusion and adjacent segment degeneration: a comparative finite element analysis of open and minimally invasive surgeries.

Eur Spine J. 2021-9

[10]
Maintaining Bone Health in the Lumbar Spine: Routine Activities Alone Are Not Enough.

Front Bioeng Biotechnol. 2021-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索