Gomes Perini L A, Bleuet P, Filevich J, Parker W, Buijsse B, Kwakman L F Tz
Université Grenoble Alpes, F-38000 Grenoble, France.
FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, Oregon 97124, USA.
Rev Sci Instrum. 2017 Jun;88(6):063706. doi: 10.1063/1.4989406.
Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (∼60%) and low read-out noise (∼1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.
本文描述了基于扫描电子显微镜(SEM)的X射线断层扫描系统的近期改进。在这类设备中,X射线是通过高度聚焦的电子束与几何形状受限的阳极靶之间的相互作用产生的。电子束不必要的长期漂移会导致X射线通量损失或图像空间分辨率降低。为了解决这个问题,基于快速傅里叶变换(FFT)的图像相关性闭环控制被集成到采集程序中,以提供在线漂移校正。X射线检测系统由一台最先进的科学互补金属氧化物半导体(CMOS)相机(间接检测)组成,具有高量子效率(约60%)和低读出噪声(约1.2个电子)。针对涵盖微电子学、工业纺织品和材料科学这三个不同科学领域的应用,从分辨率、可检测性和扫描时间等方面对系统性能进行了评估。