Suppr超能文献

在用于随机试验分析的加法风险模型中对辅助协变量进行调整时。

On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments.

作者信息

Vansteelandt S, Martinussen T, Tchetgen E Tchetgen

机构信息

Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.

Department of Biostatistics, University of Copenhagen, Denmark.

出版信息

Biometrika. 2014 Mar;101(1):237-244. doi: 10.1093/biomet/ast045. Epub 2013 Nov 21.

Abstract

We consider additive hazard models (Aalen, 1989) for the effect of a randomized treatment on a survival outcome, adjusting for auxiliary baseline covariates. We demonstrate that the Aalen least squares estimator of the treatment effect parameter is asymptotically unbiased, even when the hazard's dependence on time or on the auxiliary covariates is misspecified, and even away from the null hypothesis of no treatment effect. We moreover show that adjustment for auxiliary baseline covariates does not change the asymptotic variance of the Aalen least squares estimator of the effect of a randomized treatment. We conclude that, in view of its robustness against model misspecification, Aalen least squares estimation is attractive for evaluating treatment effects on a survival outcome in randomized experiments, and that the primary reasons to consider baseline covariate adjustment in such settings may be the interest in subgroup effects, or the need to adjust for informative censoring or for baseline imbalances. Our results also shed light on the robustness of Aalen least squares estimators against model misspecification in observational studies.

摘要

我们考虑使用加法风险模型(阿alen,1989年)来研究随机治疗对生存结局的影响,并对辅助基线协变量进行调整。我们证明,即使风险对时间或辅助协变量的依赖性设定错误,甚至在远离无治疗效果的零假设情况下,治疗效果参数的阿alen最小二乘估计量也是渐近无偏的。此外,我们表明,对辅助基线协变量进行调整不会改变随机治疗效果的阿alen最小二乘估计量的渐近方差。我们得出结论,鉴于其对模型设定错误的稳健性,阿alen最小二乘估计对于评估随机实验中治疗对生存结局的效果具有吸引力,并且在这种情况下考虑基线协变量调整的主要原因可能是对亚组效应的兴趣,或者是调整信息性删失或基线不平衡的需要。我们的结果还揭示了阿alen最小二乘估计量在观察性研究中对模型设定错误的稳健性。

相似文献

1
On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments.
Biometrika. 2014 Mar;101(1):237-244. doi: 10.1093/biomet/ast045. Epub 2013 Nov 21.
3
Cox regression can be collapsible and Aalen regression can be non-collapsible.
Lifetime Data Anal. 2023 Apr;29(2):403-419. doi: 10.1007/s10985-022-09578-0. Epub 2022 Oct 21.
4
Generalized Regression Estimators with High-Dimensional Covariates.
Stat Sin. 2020 Jul;30(3):1135-1154. doi: 10.5705/ss.202017.0384.
5
A semiparametric Cox-Aalen transformation model with censored data.
Biometrics. 2023 Dec;79(4):3111-3125. doi: 10.1111/biom.13895. Epub 2023 Jul 4.
7
Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation.
Stat Med. 2012 Jul 10;31(15):1572-81. doi: 10.1002/sim.4496. Epub 2012 Feb 23.
8
Regression analysis of current status data with auxiliary covariates and informative observation times.
Lifetime Data Anal. 2018 Apr;24(2):293-309. doi: 10.1007/s10985-016-9389-5. Epub 2017 Jan 5.
9
The additive nonparametric and semiparametric Aalen model as the rate function for a counting process.
Lifetime Data Anal. 2002 Sep;8(3):247-62. doi: 10.1023/a:1015849821021.
10
Statistical methods for incomplete data: Some results on model misspecification.
Stat Methods Med Res. 2017 Feb;26(1):248-267. doi: 10.1177/0962280214544251. Epub 2016 Jul 11.

引用本文的文献

2
On doubly robust estimation of the hazard difference.
Biometrics. 2019 Mar;75(1):100-109. doi: 10.1111/biom.12943. Epub 2018 Aug 22.
3
Restricted mean survival time: Does covariate adjustment improve precision in randomized clinical trials?
Clin Trials. 2018 Apr;15(2):178-188. doi: 10.1177/1740774518759281. Epub 2018 Mar 4.
4
Instrumental variable estimation in a survival context.
Epidemiology. 2015 May;26(3):402-10. doi: 10.1097/EDE.0000000000000262.

本文引用的文献

1
On collapsibility and confounding bias in Cox and Aalen regression models.
Lifetime Data Anal. 2013 Jul;19(3):279-96. doi: 10.1007/s10985-013-9242-z. Epub 2013 Jan 18.
2
A note on Using regression models to analyze randomized trials: asymptotically valid hypothesis tests despite incorrectly specified models.
Biometrics. 2013 Mar;69(1):282-8; discussion 288-9. doi: 10.1111/j.1541-0420.2012.01798.x. Epub 2012 Sep 28.
3
Using regression models to analyze randomized trials: asymptotically valid hypothesis tests despite incorrectly specified models.
Biometrics. 2009 Sep;65(3):937-45. doi: 10.1111/j.1541-0420.2008.01177.x. Epub 2009 Feb 4.
5
Improving efficiency of inferences in randomized clinical trials using auxiliary covariates.
Biometrics. 2008 Sep;64(3):707-715. doi: 10.1111/j.1541-0420.2007.00976.x. Epub 2008 Jan 11.
7
Some aspects of analysis of covariance.
Biometrics. 1982 Sep;38(3):541-61.
8
A linear regression model for the analysis of life times.
Stat Med. 1989 Aug;8(8):907-25. doi: 10.1002/sim.4780080803.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验