Zhang Min, Tsiatis Anastasios A, Davidian Marie
Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695-8203, U.S.A.
Biometrics. 2008 Sep;64(3):707-715. doi: 10.1111/j.1541-0420.2007.00976.x. Epub 2008 Jan 11.
The primary goal of a randomized clinical trial is to make comparisons among two or more treatments. For example, in a two-arm trial with continuous response, the focus may be on the difference in treatment means; with more than two treatments, the comparison may be based on pairwise differences. With binary outcomes, pairwise odds ratios or log odds ratios may be used. In general, comparisons may be based on meaningful parameters in a relevant statistical model. Standard analyses for estimation and testing in this context typically are based on the data collected on response and treatment assignment only. In many trials, auxiliary baseline covariate information may also be available, and it is of interest to exploit these data to improve the efficiency of inferences. Taking a semiparametric theory perspective, we propose a broadly applicable approach to adjustment for auxiliary covariates to achieve more efficient estimators and tests for treatment parameters in the analysis of randomized clinical trials. Simulations and applications demonstrate the performance of the methods.
随机临床试验的主要目标是对两种或更多种治疗方法进行比较。例如,在一个具有连续反应的双臂试验中,重点可能是治疗均值的差异;对于两种以上的治疗方法,比较可能基于两两差异。对于二元结局,可以使用两两比值比或对数比值比。一般来说,比较可以基于相关统计模型中有意义的参数。在这种情况下,用于估计和检验的标准分析通常仅基于在反应和治疗分配上收集的数据。在许多试验中,也可能有辅助基线协变量信息,利用这些数据来提高推断效率是很有意义的。从半参数理论的角度出发,我们提出了一种广泛适用的方法来调整辅助协变量,以便在随机临床试验分析中获得更有效的治疗参数估计量和检验方法。模拟和应用展示了这些方法的性能。