Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte, North Carolina, USA.
Department of Biostatistics, University of Washington, Seattle, Washington, USA.
Biometrics. 2023 Dec;79(4):3111-3125. doi: 10.1111/biom.13895. Epub 2023 Jul 4.
We propose a broad class of so-called Cox-Aalen transformation models that incorporate both multiplicative and additive covariate effects on the baseline hazard function within a transformation. The proposed models provide a highly flexible and versatile class of semiparametric models that include the transformation models and the Cox-Aalen model as special cases. Specifically, it extends the transformation models by allowing potentially time-dependent covariates to work additively on the baseline hazard and extends the Cox-Aalen model through a predetermined transformation function. We propose an estimating equation approach and devise an expectation-solving (ES) algorithm that involves fast and robust calculations. The resulting estimator is shown to be consistent and asymptotically normal via modern empirical process techniques. The ES algorithm yields a computationally simple method for estimating the variance of both parametric and nonparametric estimators. Finally, we demonstrate the performance of our procedures through extensive simulation studies and applications in two randomized, placebo-controlled human immunodeficiency virus (HIV) prevention efficacy trials. The data example shows the utility of the proposed Cox-Aalen transformation models in enhancing statistical power for discovering covariate effects.
我们提出了一类广泛的所谓 Cox-Aalen 变换模型,该模型在变换中包含了对基线风险函数的乘法和加法协变量效应。所提出的模型提供了一类高度灵活和通用的半参数模型,包括变换模型和 Cox-Aalen 模型作为特例。具体来说,它通过允许潜在的时变协变量对基线风险函数进行加法作用来扩展变换模型,并通过预定的变换函数来扩展 Cox-Aalen 模型。我们提出了一种估计方程方法,并设计了一种涉及快速和稳健计算的期望求解 (ES) 算法。通过现代经验过程技术,证明了所得估计量是一致的和渐近正态的。ES 算法为参数和非参数估计量的方差提供了一种计算上简单的估计方法。最后,我们通过广泛的模拟研究和在两项随机、安慰剂对照的人类免疫缺陷病毒 (HIV) 预防功效试验中的应用,展示了我们方法的性能。数据示例展示了所提出的 Cox-Aalen 变换模型在增强发现协变量效应的统计功效方面的实用性。