Suppr超能文献

用于通过视频胶囊内镜观察癌症息肉准确性的启发式分类器。

Heuristic Classifier for Observe Accuracy of Cancer Polyp Using Video Capsule Endoscopy.

作者信息

K Geetha, C Rajan

机构信息

Department of Information Technology, Excel Engineering College, India. Email:

出版信息

Asian Pac J Cancer Prev. 2017 Jun 25;18(6):1681-1688. doi: 10.22034/APJCP.2017.18.6.1681.

Abstract

Methods: Colonoscopy is a technique for examine colon cancer, polyps. In endoscopy, video capsule is universally used mechanism for finding gastrointestinal stages. But both the mechanisms are used to find the colon cancer or colorectal polyp. The Automatic Polyp Detection sub-challenge conducted as part of the Endoscopic Vision Challenge (http://endovis.grand-challenge.org). Method: Colonoscopy may be primary way of improve the ability of colon cancer detection especially flat lesions. Which otherwise may be difficult to detect. Recently, automatic polyp detection algorithms have been proposed with various degrees of success. Though polyp detection in colonoscopy and other traditional endoscopy procedure based images is becoming a mature field, due to its unique imaging characteristics, detecting polyps automatically in colonoscopy is a hard problem. So the proposed video capsule cam supports to diagnose the polyps accurate and easy to identify its pattern. Existing methodology mainly concentrated on high accuracy and less time consumption and it uses many different types of data mining techniques. To analyse these high resolution video scale image we have to take segmentation of image in pixel level binary pattern with the help of a mid-pass filter and relative gray level of neighbours. This work consists of three major steps to improve the accuracy of video capsule endoscopy such as missing data imputation, high dimensionality reduction or feature selection and classification. The above steps are performed using a dataset called endoscopy polyp disease dataset with 500 patients. Our binary classification algorithm relieves human analyses using the video frames. SVM has given major contribution to process the dataset. Results: In this paper the key aspect of proposed results provide segmentation, binary pattern approach with Genetic Fuzzy based Improved Kernel Support Vector machine (GF-IKSVM) classifier. The segmented images all are mostly round shape. The result is refined via smooth filtering, computer vision methods and thresholding steps. Conclusion: Our experimental result produces 94.4% accuracy in that the proposed fuzzy system and genetic Fuzzy, which is higher than the methods, used in the literature. The GF-IKSVM classifier is well-organized and provides good accuracy results for patched VCE polyp disease diagnosis.

摘要

方法

结肠镜检查是一种用于检查结肠癌和息肉的技术。在内窥镜检查中,视频胶囊是用于发现胃肠道病变的普遍使用的机制。但这两种机制都用于发现结肠癌或结直肠息肉。自动息肉检测子挑战赛是作为内窥镜视觉挑战赛(http://endovis.grand-challenge.org)的一部分进行的。方法:结肠镜检查可能是提高结肠癌检测能力的主要方法,尤其是扁平病变,否则可能难以检测到。最近,已经提出了各种不同程度成功的自动息肉检测算法。尽管基于结肠镜检查和其他传统内窥镜检查程序图像的息肉检测正成为一个成熟的领域,但由于其独特的成像特征,在结肠镜检查中自动检测息肉是一个难题。因此,所提出的视频胶囊摄像头有助于准确诊断息肉并易于识别其模式。现有方法主要集中在高精度和较少的时间消耗上,并且使用了许多不同类型的数据挖掘技术。为了分析这些高分辨率视频尺度图像,我们必须借助中值滤波和相邻像素的相对灰度级在像素级二值模式下对图像进行分割。这项工作包括三个主要步骤来提高视频胶囊内窥镜检查的准确性,如缺失数据插补、高维降维或特征选择以及分类。上述步骤使用一个名为内窥镜息肉疾病数据集的数据集对500名患者进行。我们的二分类算法利用视频帧减轻了人工分析。支持向量机在处理该数据集方面做出了主要贡献。结果:本文提出的结果的关键方面提供了基于遗传模糊改进核支持向量机(GF-IKSVM)分类器的分割、二值模式方法。分割后的图像大多是圆形的。通过平滑滤波、计算机视觉方法和阈值化步骤对结果进行了细化。结论:我们的实验结果产生了94.4% 的准确率,所提出的模糊系统和遗传模糊方法高于文献中使用的方法。GF-IKSVM分类器组织良好,为修补后的视频胶囊内窥镜息肉疾病诊断提供了良好的准确率结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验