Sadagopan Rajkumar, Ravi Saravanan, Adithya Sairam Vuppala, Vivekanandhan Sapthagirivasan
Department of Biomedical Engineering, Rajalakshmi Engineering College, Chennai, India.
Centre of Excellence in Medical Imaging, Rajalakshmi Engineering College, Chennai, India.
Proc Inst Mech Eng H. 2023 Mar;237(3):406-418. doi: 10.1177/09544119221149233. Epub 2023 Jan 23.
Presence of polyps is the root cause of colorectal cancer, hence identification of such polyps at an early stage can help in advance treatments to avoid complications to the patient. Since there are variations in the size and shape of polyps, the task of detecting them in colonoscopy images becomes challenging. Hence our work is to leverage an algorithm for segmentation and classification of the polyp of colonoscopy images using Deep learning algorithms. In this work, we propose PolypEffNetV1, a U-Net to segment the different pathologies present in the colonoscopy frame and EfficientNetB5 to classify the detected pathologies. The colonoscopy images for the segmentation process are taken from the open-source dataset KVASIR, it consists of 1000 images with "ground truth" labeling. For classification, combination of KVASIR and CVC datasets are incorporated, which consists of 1612 images with 1696 polyp regions and 760 non-polyp inflamed regions. The proposed PolypEffNetV1 produced testing accuracy of 97.1%, Jaccard index of 0.84, dice coefficient of 0.91, and F1-score of 0.89. Subsequently, for classification to evidence whether the segmented region is polyp or non-polyp inflammation, the developed classifier produced validation accuracy of 99%, specificity of 98%, and sensitivity of 99%. Hence the proposed system could be used by gastroenterologists to identify the presence of polyp in the colonoscopy images/videos which will in turn increase healthcare quality. These developed models can be either deployed on the edge of the device to enable real-time aidance or can be integrated with existing software-application for offline review and treatment planning.
息肉的存在是结直肠癌的根本原因,因此早期识别这些息肉有助于提前治疗,避免给患者带来并发症。由于息肉的大小和形状存在差异,在结肠镜检查图像中检测息肉的任务具有挑战性。因此,我们的工作是利用深度学习算法开发一种用于结肠镜检查图像中息肉分割和分类的算法。在这项工作中,我们提出了PolypEffNetV1,它由一个用于分割结肠镜检查帧中不同病变的U-Net和一个用于对检测到的病变进行分类的EfficientNetB5组成。用于分割过程的结肠镜检查图像取自开源数据集KVASIR,它由1000张带有“真实标注”的图像组成。对于分类,我们合并了KVASIR和CVC数据集,其中包括1612张图像,有1696个息肉区域和760个非息肉炎症区域。所提出的PolypEffNetV1的测试准确率为97.1%,杰卡德指数为0.84,骰子系数为0.91,F1分数为0.89。随后,为了分类以证明分割区域是息肉还是非息肉炎症,所开发的分类器的验证准确率为99%,特异性为98%,灵敏度为99%。因此,胃肠病学家可以使用所提出的系统来识别结肠镜检查图像/视频中息肉的存在,这将提高医疗质量。这些开发的模型既可以部署在设备边缘以实现实时辅助,也可以与现有软件应用程序集成以进行离线审查和治疗规划。
Proc Inst Mech Eng H. 2023-3
J Appl Clin Med Phys. 2024-6
J Gastroenterol Hepatol. 2024-4
Comput Biol Med. 2021-10
Biomed Phys Eng Express. 2023-12-27
World J Gastroenterol. 2021-8-21
Bioengineering (Basel). 2025-3-11
Bioengineering (Basel). 2024-9-25
Ann Gastroenterol. 2024
Diagnostics (Basel). 2023-9-22