DFKI GmbH, Robotics Innovation Center (RIC), Robert-Hooke-Str. 1, D-28359 Bremen, Germany.
Robotics Group, Department of Mathematics and Computer Science, University of Bremen, Robert-Hooke-Str. 1, D-28359 Bremen, Germany.
Sensors (Basel). 2017 Jul 3;17(7):1552. doi: 10.3390/s17071552.
A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.
当前,康复辅助设备(例如外骨骼或主动矫形器)的发展趋势是利用生理数据来增强其功能和可用性,例如,通过使用脑电图 (EEG) 或肌电图 (EMG) 来预测患者即将进行的运动。然而,这些模式具有不同的时间特性和分类精度,这导致了特定的优缺点。为了在康复设备中使用生理数据分析,处理应该实时进行,保证接近自然运动起始的支持,提供高移动性,并通过可以嵌入康复设备的小型化系统来实现。我们提出了一种新的基于现场可编程门阵列 (FPGA) 的系统,用于使用生理数据进行实时运动预测。其并行处理能力允许基于 EEG 和 EMG 的运动预测相结合,并且可以额外进行 P300 检测,这可能是由治疗师的指令引起的。该系统在离线和在线研究中总共对 12 名健康受试者进行了评估。我们表明,与标准 PC 相比,它提供了更高的计算性能和显著更低的功耗。此外,尽管使用定点计算,所提出的系统仍实现了与具有双精度浮点精度的系统相似的分类准确性。