Laboratoire Pierre Aigrain, Ecole Normale Supérieure, PSL Research University, CNRS, Université Pierre et Marie Curie, Sorbonne Universités, Université Paris Diderot, Sorbonne Paris-Cité, 75231 Paris Cedex 05, France.
Physics and Astronomy, College of Engineering, Mathematics, and Physical Sciences University of Exeter, Exeter EX4 4QL, United Kingdom.
Proc Natl Acad Sci U S A. 2017 Jul 18;114(29):7561-7564. doi: 10.1073/pnas.1704827114. Epub 2017 Jul 3.
In apparent contradiction to the laws of thermodynamics, Maxwell's demon is able to cyclically extract work from a system in contact with a thermal bath, exploiting the information about its microstate. The resolution of this paradox required the insight that an intimate relationship exists between information and thermodynamics. Here, we realize a Maxwell demon experiment that tracks the state of each constituent in both the classical and quantum regimes. The demon is a microwave cavity that encodes quantum information about a superconducting qubit and converts information into work by powering up a propagating microwave pulse by stimulated emission. Thanks to the high level of control of superconducting circuits, we directly measure the extracted work and quantify the entropy remaining in the demon's memory. This experiment provides an enlightening illustration of the interplay of thermodynamics with quantum information.
与热力学定律明显矛盾的是,麦克斯韦妖能够从与热浴接触的系统中周期性地提取功,利用其微观状态的信息。要解决这个悖论,就需要认识到信息和热力学之间存在着密切的关系。在这里,我们实现了一个麦克斯韦妖实验,该实验在经典和量子两种情况下都能跟踪每个组成部分的状态。这个妖是一个微波腔,它对超导量子位的量子信息进行编码,并通过受激辐射为传播的微波脉冲提供动力,将信息转化为功。由于对超导电路的高度控制,我们直接测量了提取的功,并量化了妖的记忆中剩余的熵。这个实验提供了一个发人深省的热力学与量子信息相互作用的例证。