Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Chemin des étoiles 8, bte L7.03.01, Louvain-la-Neuve, Belgium.
Lawrence Berkeley National Lab, 1 Cyclotron Rd, Berkeley, California, USA.
Sci Data. 2017 Jul 4;4:170085. doi: 10.1038/sdata.2017.85.
Electronic transport in materials is governed by a series of tensorial properties such as conductivity, Seebeck coefficient, and effective mass. These quantities are paramount to the understanding of materials in many fields from thermoelectrics to electronics and photovoltaics. Transport properties can be calculated from a material's band structure using the Boltzmann transport theory framework. We present here the largest computational database of electronic transport properties based on a large set of 48,000 materials originating from the Materials Project database. Our results were obtained through the interpolation approach developed in the BoltzTraP software, assuming a constant relaxation time. We present the workflow to generate the data, the data validation procedure, and the database structure. Our aim is to target the large community of scientists developing materials selection strategies and performing studies involving transport properties.
材料的电子输运由一系列张量性质决定,如电导率、塞贝克系数和有效质量。这些量对于理解从热电学到电子学和光伏学等许多领域的材料至关重要。可以使用玻尔兹曼输运理论框架从材料的能带结构计算输运性质。我们在这里展示了基于来自 Materials Project 数据库的一大组 48000 种材料的最大的电子输运性质计算数据库。我们的结果是通过在 BoltzTraP 软件中开发的插值方法获得的,假设弛豫时间是常数。我们介绍了生成数据的工作流程、数据验证过程和数据库结构。我们的目标是针对正在开发材料选择策略和进行涉及输运性质的研究的广大科学家群体。