Suppr超能文献

迈向系统评价和卫生技术评估中逻辑模型分类学:事先、分阶段和迭代方法。

Towards a taxonomy of logic models in systematic reviews and health technology assessments: A priori, staged, and iterative approaches.

机构信息

Institute of Medical Information Processing, Biometry and Epidemiology, Pettenkofer School of Public Health, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.

School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK.

出版信息

Res Synth Methods. 2018 Mar;9(1):13-24. doi: 10.1002/jrsm.1254. Epub 2017 Jul 25.

Abstract

The complexity associated with how interventions result-or fail to result-in outcomes and how context matters is increasingly recognised. Logic models provide an important tool for handling complexity, with contrasting uses in programme evaluation and evidence synthesis. To reconcile these, we developed an approach that combines the strengths of both traditions, propose a taxonomy of logic models, and provide guidance on how to choose between approaches and types of logic models in systematic reviews and health technology assessments (HTA). The taxonomy distinguishes 3 approaches (a priori, staged, and iterative) and 2 types (systems-based and process-orientated) of logic models. An a priori logic model is specified at the start of the systematic review/HTA and remains unchanged. With a staged logic model, the reviewer prespecifies several points, at which major data inputs require a subsequent version. An iterative logic model is continuously modified throughout the systematic review/HTA process. System-based logic models describe the system, in which the interaction between participants, intervention, and context takes place; process-orientated models display the causal pathways leading from the intervention to multiple outcomes. The proposed taxonomy of logic models offers an improved understanding of the advantages and limitations of logic models across the spectrum from a priori to fully iterative approaches. Choice of logic model should be informed by scope of evidence synthesis, presence/absence of clearly defined population, intervention, comparison, outcome (PICO) elements, and feasibility considerations. Applications across distinct interventions and methodological approaches will deliver good practice case studies and offer further insights on the choice and implementation of logic modelling approaches.

摘要

干预措施如何导致(或未能导致)结果以及背景的重要性的复杂性日益受到认识。逻辑模型为处理复杂性提供了一个重要工具,在方案评估和证据综合中有不同的用途。为了协调这些用途,我们开发了一种方法,结合了这两种传统的优势,提出了逻辑模型分类法,并就如何在系统评价和卫生技术评估(HTA)中选择方法和逻辑模型类型提供了指导。该分类法区分了 3 种方法(先验式、阶段性和迭代式)和 2 种类型(基于系统和面向过程)的逻辑模型。先验逻辑模型在系统评价/HTA 开始时指定,并且保持不变。使用阶段性逻辑模型,审查员预先指定几个点,在这些点上,主要数据输入需要后续版本。迭代逻辑模型在系统评价/HTA 过程中不断修改。基于系统的逻辑模型描述了参与者、干预和背景之间相互作用的系统;面向过程的模型则展示了从干预到多个结果的因果途径。所提出的逻辑模型分类法提高了对从先验到完全迭代方法的逻辑模型的优势和局限性的理解。逻辑模型的选择应根据证据综合的范围、是否存在明确界定的人群、干预、比较和结局(PICO)要素以及可行性考虑来决定。在不同的干预措施和方法学方法中的应用将提供良好实践案例研究,并为逻辑建模方法的选择和实施提供进一步的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验