College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China.
Advanced Biotechnology and Application Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
Plant Biotechnol J. 2018 Feb;16(2):459-471. doi: 10.1111/pbi.12786. Epub 2017 Aug 23.
Although hundreds of genetic male sterility (GMS) mutants have been identified in maize, few are commercially used due to a lack of effective methods to produce large quantities of pure male-sterile seeds. Here, we develop a multicontrol sterility (MCS) system based on the maize male sterility 7 (ms7) mutant and its wild-type Zea mays Male sterility 7 (ZmMs7) gene via a transgenic strategy, leading to the utilization of GMS in hybrid seed production. ZmMs7 is isolated by a map-based cloning approach and encodes a PHD-finger transcription factor orthologous to rice PTC1 and Arabidopsis MS1. The MCS transgenic maintainer lines are developed based on the ms7-6007 mutant transformed with MCS constructs containing the (i) ZmMs7 gene to restore fertility, (ii) α-amylase gene ZmAA and/or (iii) DNA adenine methylase gene Dam to devitalize transgenic pollen, (iv) red fluorescence protein gene DsRed2 or mCherry to mark transgenic seeds and (v) herbicide-resistant gene Bar for transgenic seed selection. Self-pollination of the MCS transgenic maintainer line produces transgenic red fluorescent seeds and nontransgenic normal colour seeds at a 1:1 ratio. Among them, all the fluorescent seeds are male fertile, but the seeds with a normal colour are male sterile. Cross-pollination of the transgenic plants to male-sterile plants propagates male-sterile seeds with high purity. Moreover, the transgene transmission rate through pollen of transgenic plants harbouring two pollen-disrupted genes is lower than that containing one pollen-disrupted gene. The MCS system has great potential to enhance the efficiency of maize male-sterile line propagation and commercial hybrid seed production.
尽管在玉米中已经鉴定出了数百种遗传雄性不育(GMS)突变体,但由于缺乏生产大量纯雄性不育种子的有效方法,很少有突变体被商业化应用。在这里,我们通过转基因策略,基于玉米雄性不育 7(ms7)突变体及其野生型 Zea mays Male sterility 7(ZmMs7)基因,开发了一个多控制不育(MCS)系统,从而实现了 GMS 在杂交种子生产中的应用。ZmMs7 是通过图谱克隆方法分离得到的,它编码一个与水稻 PTC1 和拟南芥 MS1 同源的 PHD-finger 转录因子。MCS 转基因保持系是基于转化有 MCS 构建体的 ms7-6007 突变体开发的,这些构建体包含(i)ZmMs7 基因以恢复育性,(ii)α-淀粉酶基因 ZmAA 和/或(iii)DNA 腺嘌呤甲基转移酶基因 Dam 以使转基因花粉失活,(iv)红色荧光蛋白基因 DsRed2 或 mCherry 以标记转基因种子,以及(v)除草剂抗性基因 Bar 用于转基因种子选择。MCS 转基因保持系的自交产生转基因红色荧光种子和非转基因正常颜色种子,比例为 1:1。其中,所有荧光种子都是雄性可育的,但颜色正常的种子是雄性不育的。转基因植物与雄性不育植物的杂交授粉繁殖出高纯度的雄性不育种子。此外,含有两个花粉失活基因的转基因植物花粉中的转基因传递率低于含有一个花粉失活基因的转基因植物。该 MCS 系统具有提高玉米雄性不育系繁殖和商业杂交种子生产效率的巨大潜力。