Suppr超能文献

工程化谷氨酸棒杆菌以实现透明质酸的高滴度生物合成。

Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid.

机构信息

Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China.

Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China.

出版信息

Metab Eng. 2019 Sep;55:276-289. doi: 10.1016/j.ymben.2019.07.003. Epub 2019 Jul 10.

Abstract

Hyaluronic acid (HA) is a member of the glycosaminoglycan family and has been widely used in the clinical, medical, cosmetic and food industries. In this study, we constructed a superior cell factory in Corynebacterium glutamicum for high-titer HA biosynthesis through systematic design and metabolic engineering based on a genome-scale metabolic model, iCW773. The OptForce algorithm was used in iCW773 to determine genetic interventions by using flux balance analysis. Enhancement of the HA biosynthesis pathway and attenuation of the glycolysis pathway, the pentose phosphate pathway and the dehydrogenation of pyruvate were predicted as targets for genetic modulations. Various genetic strategies were employed, including an additional promoter, P, driving hasB expression, antisense RNA-mediated attenuation of fba, zwf deletion and lactate/acetate pathway knockout. The integrated genetic changes in recombinant C. glutamicum produced 24.5 g/L HA in a fed-batch culture. Finally, pyruvate dehydrogenase activity was further reduced by antisense RNA and initial codon mutation to divert carbon flux from byproducts to HA. The corresponding modified strain, CgHA25, achieved a titer of 28.7 g/L. The byproduct concentration was reduced by half, and the major weight-average molecular weight (M) component was 0.21 MDa. This work reports a significant improvement in the HA titer in a safe host achieved by systematic metabolic engineering.

摘要

透明质酸(HA)是糖胺聚糖家族的成员,已广泛应用于临床、医学、美容和食品行业。在这项研究中,我们通过基于基因组规模代谢模型 iCW773 的系统设计和代谢工程,在谷氨酸棒杆菌中构建了一个用于高产量 HA 生物合成的优越细胞工厂。OptForce 算法用于 iCW773 中的通量平衡分析,以确定遗传干预。增强 HA 生物合成途径和减弱糖酵解途径、戊糖磷酸途径和丙酮酸脱氢作用被预测为遗传调控的目标。采用了各种遗传策略,包括附加启动子 P 驱动 hasB 表达、fba 的反义 RNA 衰减、zwf 缺失和乳酸/乙酸途径敲除。在重组谷氨酸棒杆菌中的综合遗传变化在补料分批培养中产生了 24.5 g/L 的 HA。最后,通过反义 RNA 和初始密码子突变进一步降低了丙酮酸脱氢酶的活性,将碳通量从副产物转移到 HA。相应的修饰菌株 CgHA25 达到了 28.7 g/L 的产量。副产物浓度降低了一半,主要重均分子量(M)组分达到 0.21 MDa。这项工作报道了通过系统代谢工程在安全宿主中显著提高了 HA 的产量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验